若空間三條直線a、b、c滿足a⊥b,b⊥c,則直線a與c( )
A.一定平行
B.一定相交
C.一定是異面直線
D.平行、相交、是異面直線都有可能
【答案】分析:利用正方體的棱與棱的位置關(guān)系及異面直線所成的角的定義即可得出,若直線a、b、c滿足a⊥b、b⊥c,則a∥c,或a與c相交,或a與c異面.
解答:解:如圖所示:a⊥b,b⊥c,
a與c可以相交,異面直線,也可能平行.
從而若直線a、b、c滿足a⊥b、b⊥c,則a∥c,或a與c相交,或a與c異面.
故選D.
點(diǎn)評(píng):本題考查空間中直線與直線之間的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意全面考慮.熟練掌握正方體的棱與棱的位置關(guān)系及異面直線所成的角的定義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若空間三條直線a、b、c滿足a⊥b,b∥c,則直線a與c( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海)若空間三條直線a、b、c滿足a⊥b,b⊥c,則直線a與c( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若空間三條直線a、b、c滿足a⊥b,b∥c,則直線a與c( 。
A、一定平行B、一定相交C、一定是異面直線D、一定垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高考預(yù)測(cè)試卷理科數(shù)學(xué)試卷(解析版) 題型:選擇題

若空間三條直線a、b、c滿足,則直線(    )

    A.一定平行                             B.一定相交

    C.一定是異面直線                       D.一定垂直

 

查看答案和解析>>

同步練習(xí)冊(cè)答案