【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的最大值及此時(shí)圍成的三角形的面積.

【答案】解:(I)∵f(x)≥2﹣|x﹣1|恒成立,即|x﹣ |+|x﹣1|≥1恒成立, 又|x﹣ |+|x﹣1|≥|x﹣ ﹣(x﹣1)|=|1﹣ |,
∴|1﹣ |≥1,解得a≤0或a≥4.
∴a的取值范圍是(﹣∞,0]∪[4,+∞).
(II)當(dāng)a=1時(shí),f(x)=|2x﹣1|+|x﹣1|= ,
做出f(x)的函數(shù)圖象如圖所示:

由圖象可知當(dāng) <m≤1時(shí),直線y=m與f(x)的圖象構(gòu)成三角形.
∴m的最大值為1,
令2﹣3x=1得x= ,此時(shí)圍成三角形的面積為 (1﹣ )×(1﹣ )=
【解析】(I)利用絕對(duì)值三角不等式得出|x﹣ |+|x﹣1|的最小值,從而解出a的范圍;(II)做出f(x)的函數(shù)圖象,根據(jù)函數(shù)圖象得出m的范圍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用絕對(duì)值不等式的解法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在政府部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,新上了把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項(xiàng)目.經(jīng)測(cè)算,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似的表示為:,且每處理一噸二氧化碳可得到能利用的化工產(chǎn)品價(jià)值為200元,若該項(xiàng)目不獲利,政府將補(bǔ)貼.

(I)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損;

(II)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程

(1)若a、b是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;

(2)若a[2,4],b[0,6],求方程沒(méi)有實(shí)根的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的右焦點(diǎn)為F,不垂直x軸且不過(guò)F點(diǎn)的直線l與橢圓C相交于A,B兩點(diǎn).
(Ⅰ)若直線l經(jīng)過(guò)點(diǎn)P(2,0),則直線FA、FB的斜率之和是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由;
(Ⅱ)如果FA⊥FB,原點(diǎn)到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了考查兩個(gè)變量之間的線性關(guān)系,甲、乙兩位同學(xué)各自獨(dú)立作了次和次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為,已知兩人得的試驗(yàn)數(shù)據(jù)中,變量的數(shù)據(jù)的平均值都相等,且分別都是、,那么下列說(shuō)法正確的是( )

A. 直線一定有公共點(diǎn) B. 必有直線

C. 直線相交,但交點(diǎn)不一定是 D. 必定重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .
(1)討論 的單調(diào)性;
(2)當(dāng) 時(shí),證明: 對(duì)于任意的 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax﹣x2﹣lnx存在極值,若這些極值的和大于5+ln2,則實(shí)數(shù)a的取值范圍為(
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)工會(huì)利用“健步行” 開展健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5 千步可獲積分30分(不足5千步不積分), 每多走2千步再積20分(不足2千步不積分).為了解會(huì)員的健步走情況,工會(huì)在某天從系統(tǒng)中隨機(jī)抽取了 1000名會(huì)員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為,九組,整理得到如圖頻率分布直方圖:

(1)求當(dāng)天這1000名會(huì)員中步數(shù)少于11千步的人數(shù);

(2)從當(dāng)天步數(shù)在的會(huì)員中按分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人積分之和不少于200分的概率;

(3)寫出該組數(shù)據(jù)的中位數(shù)(只寫結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),直線C2的方程為y= ,以O(shè)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,
(1)求曲線C1和直線C2的極坐標(biāo)方程;
(2)若直線C2與曲線C1交于A,B兩點(diǎn),求 +

查看答案和解析>>

同步練習(xí)冊(cè)答案