【題目】平面內(nèi)與兩定點(diǎn),連線的斜率之積等于的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線為.若曲線與軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)、滿足.
(1)求曲線的軌跡方程;
(2)求面積的最大值.
【答案】(1)(2)
【解析】
(1)首先設(shè)出,根據(jù)斜率之積等于得到,再化簡(jiǎn)即可得到曲線的軌跡方程.
(2)分別討論的斜率存在和不存在時(shí),根據(jù),設(shè)出直線方程與橢圓聯(lián)立,利用根系關(guān)系得到直線恒過(guò),再將面積轉(zhuǎn)化為,利用根系關(guān)系和對(duì)勾函數(shù)的單調(diào)性即可得到面積的最大值.
(1)設(shè)曲線上任意一點(diǎn),,,
,
整理得:.
又曲線加上,兩點(diǎn),所以曲線的方程是:.
(2)由題意可知,設(shè),,
當(dāng)的斜率存在時(shí),設(shè)直線:,
聯(lián)立方程組:,得到,
則,.
,,
因?yàn)?/span>,所以有,
,
,
化簡(jiǎn)得到,解得:或(舍).
當(dāng)的斜率不存在時(shí),
易知滿足條件的直線為:.
因此,直線恒過(guò)定點(diǎn).
所以,
,
因?yàn)?/span>,所以.
設(shè),.
由對(duì)勾函數(shù)的單調(diào)性得到在為增函數(shù),
所以.
即:(時(shí)取到最大值).
所以面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱柱中,底面是以為底邊的等腰梯形,且.
(I)求證:平面平面;
(Ⅱ)若,求直線AB與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒開一壺水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時(shí)間內(nèi)煤氣輸出量成正比,那么為多少時(shí)燒開一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的上頂點(diǎn)為A,右焦點(diǎn)為F,O是坐標(biāo)原點(diǎn),是等腰直角三角形,且周長(zhǎng)為.
(1)求橢圓的方程;
(2)若直線l與AF垂直,且交橢圓于B,C兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)原點(diǎn)在圓的內(nèi)部,直線與圓交于、兩點(diǎn);以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程,并求的取值范圍;
(2)求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年是我國(guó)全面建成小康社會(huì)和“十三五”規(guī)劃收官之年,也是佛山在經(jīng)濟(jì)總量超萬(wàn)億元新起點(diǎn)上開啟發(fā)展新征程的重要?dú)v史節(jié)點(diǎn).作為制造業(yè)城市,佛山一直堅(jiān)持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國(guó)家制造業(yè)創(chuàng)新中心,走“世界科技+佛山智造+全球市場(chǎng)”的創(chuàng)新發(fā)展之路.在推動(dòng)制造業(yè)高質(zhì)量發(fā)展的大環(huán)境下,佛山市某工廠統(tǒng)籌各類資源,進(jìn)行了積極的改革探索.下表是該工廠每月生產(chǎn)的一種核心產(chǎn)品的產(chǎn)量x()(件)與相應(yīng)的生產(chǎn)總成本y(萬(wàn)元)的四組對(duì)照數(shù)據(jù).
x | 5 | 7 | 9 | 11 |
y | 200 | 298 | 431 | 609 |
工廠研究人員建立了y與x的兩種回歸模型,利用計(jì)算機(jī)算得近似結(jié)果如下:
模型①:
模型②:.
其中模型①的殘差(實(shí)際值-預(yù)報(bào)值)圖如圖所示:
(1)根據(jù)殘差分析,判斷哪一個(gè)模型更適宜作為y關(guān)于x的回歸方程?并說(shuō)明理由;
(2)市場(chǎng)前景風(fēng)云變幻,研究人員統(tǒng)計(jì)歷年的銷售數(shù)據(jù)得到每件產(chǎn)品的銷售價(jià)格q(萬(wàn)元)是一個(gè)與產(chǎn)量x相關(guān)的隨機(jī)變量,分布列為:
q | |||
P | 0.5 | 0.4 | 0.1 |
結(jié)合你對(duì)(1)的判斷,當(dāng)產(chǎn)量x為何值時(shí),月利潤(rùn)的預(yù)報(bào)期望值最大?最大值是多少(精確到0.1)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中心在原點(diǎn)的橢圓E的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)關(guān)于直線對(duì)稱,且橢圓E與坐標(biāo)軸的一個(gè)交點(diǎn)坐標(biāo)為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線l(直線的斜率k存在且不為0)交E于A,B兩點(diǎn),交x軸于點(diǎn)P點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D,直線BD交x軸于點(diǎn)Q.試探究是否為定值?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com