【題目】(本小題滿分13分)
如圖,在四棱錐中,平面,,,,,,.
(I)求異面直線與所成角的余弦值;
(II)求證:平面;
(II)求直線與平面所成角的正弦值.
【答案】(1) (2)
【解析】試題分析:本小題主要考查兩條異面直線所成的角、直線與平面垂直、直線與平面所成的角等基礎(chǔ)知識(shí).考查空間想象能力、運(yùn)算求解能力和推理論證能力.
試題解析:(Ⅰ)如圖,由已知AD//BC,故或其補(bǔ)角即為異面直線AP與BC所成的角.因?yàn)锳D⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.
所以,異面直線AP與BC所成角的余弦值為.
(Ⅱ)證明:因?yàn)锳D⊥平面PDC,直線PD平面PDC,所以AD⊥PD.又因?yàn)锽C//AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.
(Ⅲ)過點(diǎn)D作AB的平行線交BC于點(diǎn)F,連結(jié)PF,則DF與平面PBC所成的角等于AB與平面PBC所成的角.
因?yàn)镻D⊥平面PBC,故PF為DF在平面PBC上的射影,所以為直線DF和平面PBC所成的角.
由于AD//BC,DF//AB,故BF=AD=1,由已知,得CF=BC–BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.
所以,直線AB與平面PBC所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分15分)如圖,已知拋物線,點(diǎn)A,,拋物線上的點(diǎn).過點(diǎn)B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sinxcosx﹣2cos2x+1.
(1)求函數(shù)f(x)的最小正周期;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位,得到函數(shù)g(x)的圖象.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若g( )=1,a=2,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二項(xiàng)式的展開式中只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,且展開式中的第3項(xiàng)的系數(shù)是第4項(xiàng)的系數(shù)的3倍,則的值為( )
A. 4 B. 8 C. 12 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC各頂點(diǎn)的坐標(biāo)分別為:A(0,4);B(﹣3,0),C(1,1)
(1)求點(diǎn)C到直線AB的距離;
(2)求AB邊的高所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(18)(本小題滿分12分)在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙中心理暗示,通過對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名B1,B2,
B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示。
(I)求接受甲種心理暗示的志愿者中包含A1但不包含B3的頻率。
(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中軸的正半軸重合.若曲線的參數(shù)方程為(為參數(shù)),直線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為極坐標(biāo)方程;
(2)由直線上一點(diǎn)向曲線引切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在多面體中, 與均為邊長(zhǎng)為2的正方形, 為等腰直角三角形, ,且平面平面,平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn), 和1是的兩個(gè)零點(diǎn),且,求的值;
(2)若,且是的兩個(gè)極值點(diǎn),求證:當(dāng)時(shí), .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com