【題目】已知函數(shù).

1)判斷函數(shù)在區(qū)間上零點的個數(shù);

2)函數(shù)在區(qū)間上的極值點從小到大分別為,證明:

(Ⅰ)

(Ⅱ)對一切成立.

【答案】(1)兩個零點;(2)(I)見解析;(Ⅱ)見解析

【解析】

(1)求導,利用導數(shù)得出函數(shù)的單調(diào)性,結(jié)合零點存在性定理即可得出零點的個數(shù);

(2) (Ⅰ)對函數(shù)求導,由(1)得出的范圍,進而得到,利用誘導公式即可得出;

(Ⅱ)由(Ⅰ)得出 >>,結(jié)合的單調(diào)性確定,且,對n為偶數(shù)和奇數(shù)進行分類討論,即可得出對一切成立.

(1)

時,,

上單調(diào)遞減,,上無零點

時,上單調(diào)遞增,

上有唯一零點

時,上單調(diào)遞減

,上有唯一零點

綜上,函數(shù)在區(qū)間上有兩個零點。

2

I)由(1)知無極值點;在有極小值點,即為;

有極大值點,即為,同理可得,在有極小值點

有極值點.

,,由函數(shù)單調(diào)遞增,

,

單調(diào)遞減得

;

(Ⅱ)同理, >>

上單調(diào)遞減得

,且

n為偶數(shù)時,從開始相鄰兩項配對,每組和均為負值,

,結(jié)論成立;

n為奇數(shù)時,從開始相鄰兩項配對,每組和均為負值,還多出最后一項也是負值,即,結(jié)論也成立。

綜上,對一切成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】由中央電視臺綜合頻道和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中滿意的觀眾的概率為0.15

1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調(diào)查,則應(yīng)抽取滿意、地區(qū)的人數(shù)各是多少;

2)在(1)的條件下,從抽取到滿意的人中隨機抽取2人,設(shè)抽到的觀眾來自不同的地區(qū)為事件,求事件的概率;

3)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關(guān)系.

附:參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第28屆金雞百花電影節(jié)將于11月19日至23日在福建省廈門市舉辦,近日首批影展片單揭曉,《南方車站的聚會》《春江水暖》《第一次的離別》《春潮》《抵達之謎》五部優(yōu)秀作品將在電影節(jié)進行展映.若從這五部作品中隨機選擇兩部放在展映的前兩位,則《春潮》與《抵達之謎》至少有一部被選中的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)fx)=|xm+x|,mN*,存在實數(shù)x使fx)<2成立.

1)求實數(shù)m的值;

2)若α≥1,β≥1,fα+fβ)=4,求證:≥3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在經(jīng)濟學中,函數(shù)的邊際函數(shù)定義為.某醫(yī)療設(shè)備公司生產(chǎn)某醫(yī)療器材,已知每月生產(chǎn)的收益函數(shù)為 (單位:萬元),成本函數(shù)(單位:萬元),該公司每月最多生產(chǎn)臺該醫(yī)療器材.(利潤函數(shù)=收益函數(shù)-成本函數(shù))

1)求利潤函數(shù)及邊際利潤函數(shù)

2)此公司每月生產(chǎn)多少臺該醫(yī)療器材時每臺的平均利潤最大,最大值為多少?(精確到

3)求為何值時利潤函數(shù)取得最大值,并解釋邊際利潤函數(shù)的實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,,,點EBC上,

1)求證:平面平面PAC

2)若直線PE與平面PAC所成的角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)).以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系.

1)求圓的普通方程及其極坐標方程;

2)設(shè)直線的極坐標方程為,射線與圓的交點為(異于極點),與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的方程為,為橢圓C的左右焦點,離心率為,短軸長為2。

(1)求橢圓C的方程;

(2)如圖,橢圓C的內(nèi)接平行四邊形ABCD的一組對邊分別過橢圓的焦點,求該平行四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了2015121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表:

日期

121

122

123

124

125

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程bx+a;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?

查看答案和解析>>

同步練習冊答案