(2013•浙江二模)我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“黃金搭檔”.已知F1、F2是一對“黃金搭檔”的焦點,P是它們在第一象限的交點,當∠F1PF2=60°時,這一對“黃金搭檔”中雙曲線的離心率是
3
3
分析:設(shè)F1P=m,F(xiàn)2P=n,F(xiàn)1F2=2c,由余弦定理4c2=m2+n2-mn,設(shè)a1是橢圓的長半軸,a1是雙曲線的實半軸,由橢圓及雙曲線定義,得m+n=2a1,m-n=2a1,由此能求出結(jié)果.
解答:解:設(shè)F1P=m,F(xiàn)2P=n,F(xiàn)1F2=2c,
由余弦定理得(2c)2=m2+n2-2mncos60°,
即4c2=m2+n2-mn,
設(shè)a1是橢圓的實半軸,a2是雙曲線的實半軸,
由橢圓及雙曲線定義,得m+n=2a1,m-n=2a2
∴m=a1+a2,n=a1-a2
將它們及離心率互為倒數(shù)關(guān)系代入前式得a12-4a1a2+a12=0,
a1=3a2,e1•e2=
c
a1
c
a2
=
(
c
a2
)2
3
=1,
解得e2=
3

故答案為:
3
點評:本題考查雙曲線和橢圓的簡單性質(zhì),解題時要認真審題,注意正確理解“黃金搭檔”的含義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•浙江二模)對數(shù)函數(shù)y=logax(a>0且a≠1)與二次函數(shù)y=(a-1)x2-x在同一坐標系內(nèi)的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江二模)在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江二模)已知函數(shù)f(x)=
x+
1
x
,x>0
x3+9,x≤0
,若關(guān)于x的方程f(x2+2x)=a(a∈R)有六個不同的實根,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江二模)設(shè)m、n為空間的兩條不同的直線,α、β為空間的兩個不同的平面,給出下列命題:
①若m∥α,m∥β,則α∥β;
②若m⊥α,m⊥β,則α∥β;
③若m∥α,n∥α,則m∥n;
④若m⊥α,n⊥α,則m∥n.
上述命題中,所有真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江二模)如圖,過拋物線C:y2=4x上一點P(1,-2)作傾斜角互補的兩條直線,分別與拋物線交于點A(x1,y1),B(x2,y2
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面積的最大值.

查看答案和解析>>

同步練習冊答案