如圖,⊙O過點B、C,圓心O在等腰Rt△ABC的內(nèi)部,,
.則⊙O的半徑為(    ).

A. 6     B. 13          C.       D.
C
分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.
解答:解:延長AO交BC于D,

連接OB,
∵⊙O過B、C,
∴O在BC的垂直平分線上,
∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,
∴AD⊥BC,BD=DC=3,AO平分∠BAC,
∵∠BAC=90°,
∴∠ADB=90°,∠BAD=45°,
∴∠BAD=∠ABD=45°,
∴AD=BD=3,
∴OD=3-1=2,
由勾股定理得:OB==
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點,且不與頂點重合,已知為方程的兩根

(1)證明四點共圓
(2)若四點所在圓的半徑

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
已知ΔABC中AB=AC,D為ΔABC外接圓劣弧上的點(不與點A、C重合),延長BD至E,延長交BC的延長線于F .

(I )求證:;
(II)求證:AB.AC.DF=AD.FC.FB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)已知圓C滿足(1)截y軸所得弦MN長為4;(2)被x軸分成兩段圓弧,其弧 長之比為3:1,且圓心在直線y=x上,求圓C的方程。
(為方便學(xué)生解答,做了一種情形的輔助圖形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選做題(本小題滿分10分,請考生在第22、23、24三題中任選一題作答。如果多做,則按所做的第一題計分,作答時請在答題紙上所選題目的方框內(nèi)打“√”。
22.選修4-1:幾何證明選講。
如圖,是圓的直徑,是弦,的平分線交圓于點,交的延長線于點于點。
(1)求證:是圓的切線;
(2)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知A、B、C、D為圓O上的四點,直線DE為圓O的切線,AC∥DE,AC與BD相交于H點
(Ⅰ)求證:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(請考生在第22、23兩題中任選一題作答,如果多做。則按所做的第一題記分.
(本小題滿分10分)選修4-1:幾何證明選講
如圖:AB是⊙O的直徑,G是AB延長線上的一點,GCD是⊙O的割線,過點G作AG的垂線,交直線AC于點E,交直線AD于點F,過點G作⊙O的切線,切點為H.求證:

(Ⅰ)C、D、F、E四點共圓;
(Ⅱ)GH2=GE·GF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)中,,,,,則       
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖4, 是圓的切線, 切點為, 點在圓上,
,則圓的面積為    

查看答案和解析>>

同步練習(xí)冊答案