設(shè)函數(shù)f1(x)=x2,f2(x)=x-1,f3(x)=x3,則f1(f2(f3(2007)))=________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:江蘇省無錫市輔仁高級中學(xué)2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:044

對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a·f1(x)+b·f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).

(Ⅰ)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由;

第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;

(Ⅱ)設(shè)f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;

(Ⅲ)設(shè)f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函數(shù)h(x)使h(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省無錫市輔仁高級中學(xué)2012屆高三第一次模擬考試數(shù)學(xué)理科試題 題型:044

對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a·f1(x)+b·f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).

(Ⅰ)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由;

第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;

(Ⅱ)設(shè)f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;

(Ⅲ)設(shè)f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函數(shù)h(x)使h(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x>0)

觀察:f1(x)=f(x)=,

f2(x)=f(f1(x))=,

f3(x)=f(f2(x))=

f4(x)=f(f3(x))=,……

根據(jù)以上事實,由歸納推理可得:

當(dāng)n∈N*n≥2時,fn(x)=f(fn-1(x))=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f1(x)=,f2(x)=x-1,f3(x)=x2,則f1(f2(f3(2 013)))=________.

思路 本題是一個三次復(fù)合函數(shù)求值問題,首先求f3(2 013),在此基礎(chǔ)上求f2,f1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f1(x)=x,f2(x)=x-1,f3(x)=x2,則f1(f2(f3(2 009)))=__________.

查看答案和解析>>

同步練習(xí)冊答案