已知f(x)=2x+3(x∈R),若|f(x)|<a的必要條件是|x+1|<b(a,b>0),則a,b之間的關(guān)系是( 。
A、b≥
a+1
2
B、b
a
2
C、a
b
2
D、a
b
2
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:簡(jiǎn)易邏輯
分析:根據(jù)絕對(duì)值不等式的性質(zhì)以及充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:由|f(x)|<a得|2x+3|<a,
-3-a
2
<x<
a-3
2

由|x+1|<b得-1-b<x<b-1.
若|f(x)|<a的必要條件是|x+1|<b(a,b>0),
b-1≥
a-3
2
-1-b≤
-3-a
2

2b≥a-1
2b≥a+1

即b≥
a+1
2

選A
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)絕對(duì)值不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={-3,a+1,a2},B={2a-1,a-3,a2+1},若A∩B={-3},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3+ax2+bx-26(a,b∈R)在x=-3和x=2處取到極值.
(1)求a,b和f(-3)-f(2)的值;
(2)求最大的正整數(shù)t,使得?x1,x2∈[-t,t]時(shí),|f(x1)-f(x2)|≤125與|f′(x1)-f′(x2)|≤125同時(shí)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(1-x)+loga(x+3),0<a<1,若函數(shù)f(x)的最小值為-4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x|x|+px,x∈R是(  )
A、偶函數(shù)
B、奇函數(shù)
C、即不是奇函數(shù)也不是偶函數(shù)
D、奇偶性與p有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,且a≠1,且a≠2,則“函數(shù)y=logax在(0,+∞)上是減函數(shù)”是“函數(shù)y=(a-2)ax在R上是增函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖是邊長(zhǎng)為2的正三角形,側(cè)視圖是直角三角形,則此幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是雙曲線C:
x2
a2
-
y2
b2
=1
(a,b>0)上的一點(diǎn),C的半焦距為c,M,N分別是圓(x+c)2+y2=(c-a)2,(x-c)2+y2=(c-a)2上的點(diǎn),若|PM|-|PN|的最大值為4a,則C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1=6an+2n+1,a1=1.
(1)求證:數(shù)列{
an
2n
+
1
2
}是等比數(shù)列;
(2)若數(shù)列{an+r2n}是等比數(shù)列,求r;
(3)求
an
2

查看答案和解析>>

同步練習(xí)冊(cè)答案