【題目】設(shè)點(diǎn)(a,b)是區(qū)域 內(nèi)的任意一點(diǎn),則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.

【答案】A
【解析】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖

若f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù),

,即

則A(0,4),B(4,0),由

即C( ),

則△OBC的面積S= =

△OAB的面積S= 4=8.

則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率P= = ,

所以答案是:A.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解幾何概型的相關(guān)知識(shí),掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,SA=SC,AB⊥AC,D為BC的中點(diǎn),E為AC上一點(diǎn),且DE∥平面SAB.求證:

(1)直線AB∥平面SDE;
(2)平面ABC⊥平面SDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+(2a﹣1)x﹣lnx,a∈R.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線經(jīng)過(guò)點(diǎn)(2,11),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間(2,3)上單調(diào),求實(shí)數(shù)a的取值范圍;
(3)設(shè) ,若對(duì)x1∈(0,+∞),x2∈[0,π],使得f(x1)+g(x2)≥2成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列各式: C =40;
C +C =41;
C +C +C =42
C +C +C +C =43;

照此規(guī)律,當(dāng)n∈N*時(shí),
C +C +C +…+C =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足2an+1=an+an+2+k(n∈N* , k∈R),且a1=2,a3+a5=﹣4.
(1)若k=0,求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若a4=﹣1,求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級(jí)隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識(shí)別測(cè)試,得到成績(jī)莖葉圖如下,假定成績(jī)大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,

空間想象能力突出

空間想象能力正常

合計(jì)

男生

女生

合計(jì)


(2)判斷是否有90%的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
(3)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績(jī)超過(guò)90分的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望. 下面公式及臨界值表僅供參考:

P(X2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是拋物線x2=4y上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影是Q,點(diǎn)A(8,7),則|PA|+|PQ|的最小值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)U=R,A={x|y=x },B={y|y=﹣x2},則A∩(UB)=( )
A.
B.R
C.{x|x>0}
D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案