本題共有2題,第1小題滿分4分,第2小題滿分2分
已知集合A={x||x-1|≤1},B={x|x≥a}.
(1)當a=1時,求集合A∩B;
(2)若A⊆B,求實數(shù)a的取值范圍.
考點:集合的包含關系判斷及應用,交集及其運算
專題:計算題,集合
分析:首先化簡集合A,
(1)由題意求集合B,從而求A∩B;
(2)由A⊆B求實數(shù)a的取值范圍.
解答: 解:由題意,
A={x||x-1|≤1}=[0,2],
(1)B={x|x≥1},
故A∩B=[1,2].
(2)∵A⊆B,
∴a≤0.
點評:本題考查了集合的化簡與運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

1-
1
2
sin(2x+
π
3
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知斜率存在且過點A(-1,0)的動直線l與圓C:x2+(y-3)2=4相交于P,Q兩點,M是PQ中點,l與直線m:x+3y+6=0相交于N,則
AM
AN
等于( 。
A、-6B、-5C、-4D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=BC=1,動點P、Q分別在線段C1D、AC上,則線段PQ長度的最小值時( 。
A、
2
3
B、
3
3
C、
2
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax+1
在(-∞,1)上有意義,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,∠C=90°,D是AB的中點.用向量法證明CD=
1
2
AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和Sn滿足Sn=2an-n.
(1)求證:數(shù)列{an+1}為等比數(shù)列;
(2)記bn=log2(an+1),求數(shù)列{
1
bnbn+1
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過A(1,
3
)、B(
2
,-
2
),且圓心在直線y=x上.
(1)求圓C的方程;
(2)設直線l的方程為(t3+2t)x+(t3+t+1)y-(t3+2t)=0,
①證明:對任意實數(shù)t,直線l過定點P;
②過動點M作圓C的兩條切線,切點分別為A和B,且有
MA
MB
=0,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
log
1
2
(x-1)
的定義域為集合A,函數(shù)g(x)=3 m-2x-x2-1的值域為集合B,且 A∪B=B,實數(shù)m的取值范圍是多少.

查看答案和解析>>

同步練習冊答案