4.已知向量$\vec a=(-1,\;1)$,$\vec b=(n,\;2)$,若$\vec a•\vec b=\frac{5}{3}$,則n=$\frac{1}{3}$.

分析 利用向量積的坐標運算法則直接求解.

解答 解:∵向量$\vec a=(-1,\;1)$,$\vec b=(n,\;2)$,$\vec a•\vec b=\frac{5}{3}$,
∴$\overrightarrow{a}•\overrightarrow$=-1+2=$\frac{5}{3}$,
解得n=$\frac{1}{3}$.

點評 本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意向量坐標運算法則的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.下列說法錯誤的是( 。
A.命題“若x2-5x-6=0”則“x=2”的逆否命題是“若x≠2”則“x2-5x-6≠0”
B.若命題p:存在${x_0}∈R,x_0^2+{x_0}+1<0$,則¬p:對任意x∈R,x2+x+1≥0
C.若x,y∈R,則x=y是“$xy≥{(\frac{x+y}{2})^2}$”的充要條件
D.已知命題p和q,若“p或q”為假命題,則命題p和q中必一真一假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在△ABC中,已知$∠B=45°,\;AC=\sqrt{2}BC$,則∠C=105°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知正項數(shù)列{an}的首項a1=1,且對一切的正整數(shù)n,均有:(n+1)an+1-nan2+(n+1)anan+1-nan=0,則數(shù)
列{an}的通項公式an=$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.對于任意的非零實數(shù)m,直線y=2x+m與雙曲線$\frac{x^2}{a^2}-\frac{{{y^2}_{\;}}}{b^2}=1({a>0,b>0})$有且只有一個交點,則雙曲線的離心率為(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,其中俯視圖與左視圖均為半徑是1的圓,則這個幾何體的體積是( 。
A.$\frac{4π}{3}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如果a<b<0,則下列不等式成立的是( 。
A.$\frac{1}{a}<\frac{1}$B.ac2<bc2C.a2<b2D.a3<b3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.橢圓C的焦點為F1(-$\sqrt{2}$,0),${F_2}(\sqrt{2},0)$,且點$M(\sqrt{2},1)$在橢圓C上.過點P(0,1)的動直線l與橢圓相交于A,B兩點,點B關于y軸的對稱點為點D(不同于點A).
(I) 求橢圓C的標準方程;
(II)證明:直線AD恒過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.根據(jù)如圖所示的偽代碼,則輸出S的值為20.

查看答案和解析>>

同步練習冊答案