【題目】在直角坐標(biāo)系中,點(diǎn),是曲線上的任意一點(diǎn),動(dòng)點(diǎn)滿足

1)求點(diǎn)的軌跡方程;

2)經(jīng)過點(diǎn)的動(dòng)直線與點(diǎn)的軌跡方程交于兩點(diǎn),在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求出的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1);(2)存在點(diǎn)符合題意.

【解析】

1)設(shè),,利用相關(guān)點(diǎn)代入法得到點(diǎn)的軌跡方程;

2)設(shè)存在點(diǎn),使得,則,因?yàn)橹本l的傾斜角不可能為,故設(shè)直線l的方程為,利用斜率和為0,求得,從而得到定點(diǎn)坐標(biāo).

1)設(shè),

,.

,則

因?yàn)辄c(diǎn)N為曲線上的任意一點(diǎn),

所以,

所以,整理得,

故點(diǎn)C的軌跡方程為.

2)設(shè)存在點(diǎn),使得,所以.由題易知,直線l的傾斜角不可能為,故設(shè)直線l的方程為,

代入,得.設(shè),,則,.因?yàn)?/span>,所以,即,所以.故存在點(diǎn),使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(1,-3,2),=(-2,1,1),點(diǎn)A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直線AB上,是否存在一點(diǎn)E,使得?(O為原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,.

1)若是增函數(shù),求實(shí)數(shù)a的范圍;

2)若上最小值為3,求實(shí)數(shù)a的值;

3)若時(shí)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的極值點(diǎn)個(gè)數(shù);

(2)若,證明 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市移動(dòng)公司為了提高服務(wù)質(zhì)量,決定對(duì)使用A,B兩種套餐的集團(tuán)用戶進(jìn)行調(diào)查,準(zhǔn)備從本市個(gè)人數(shù)超過1000人的大集團(tuán)和8個(gè)人數(shù)低于200人的小集團(tuán)中隨機(jī)抽取若干個(gè)集團(tuán)進(jìn)行調(diào)查,若一次抽取2個(gè)集團(tuán),全是小集團(tuán)的概率為

求n的值;

若取出的2個(gè)集團(tuán)是同一類集團(tuán),求全為大集團(tuán)的概率;

若一次抽取4個(gè)集團(tuán),假設(shè)取出小集團(tuán)的個(gè)數(shù)為X,求X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案