已知線段MN的兩個端點M、N分別在軸、軸上滑動,且,點P在線段MN上,滿足,記點P的軌跡為曲線W

(1)求曲線W的方程,并討論W的形狀與的值的關系;

(2)時,設AB是曲線W軸、軸的正半軸的交點,過原點的直線與曲線W交于CD兩點,其中C在第一象限,求四邊形ACBD面積的最大值.

 

【答案】

1時,曲線的方程為,表示焦點在軸上的橢圓;當時,曲線的方程為為以原點為圓心、半徑為2的圓;當時,曲線的方程為,表示焦點在軸上的橢圓.2.

【解析】

試題分析:(1)設出,根據(jù)已知條件以及 ,得到一個關系式,化簡成標準形式為,分別討論當,,時所表達的的形狀;(2)由,則曲線的方程是,得出,再設,依據(jù)對稱性得,表示出,根據(jù)基本不等式得到,故四邊形面積有最大值.

試題解析:1)設,則,而由 ,則,解得,代入得:,化簡得.

時,曲線的方程為,表示焦點在軸上的橢圓;

時,曲線的方程為,為以原點為圓心、半徑為2的圓;

時,曲線的方程為,表示焦點在軸上的橢圓.

2)由(1)當時,曲線的方程是,可得.設,由對稱性可得.因此,四邊形的面積,

,,即,所以四邊形的面積當且僅當時,即時取等號,故當C的坐標為時,四邊形面積有最大值.

考點:1.橢圓的標準方程;2.直線與圓錐曲線的聯(lián)立問題.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、在平面直角坐標系中,已知線段AB的兩個端點分別是A(-4,-1),B(1,1),將線段AB平移后得到線段A'B',若點A'的坐標為(-2,2),則點B'的坐標為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知線段AB的兩個端點A、B分別在x軸和y軸上滑動,且|AB|=2.
(1)求線段AB的中點P的軌跡C的方程;
(2)求過點M(1,2)且和軌跡C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知線段MN的兩個端點M、N分別在x軸、y軸上滑動,且|MN|=4,點P在線段MN上,滿足
MP
=m
MN
(0<m<1),記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與m的值的關系;
(2)當m=
1
4
時,設A、B是曲線W與x軸、y軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省黃岡中學、孝感高中高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知線段MN的兩個端點M、N分別在x軸、y軸上滑動,且|MN|=4,點P在線段MN上,滿足=m(0<m<1),記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與m的值的關系;
(2)當m=時,設A、B是曲線W與x軸、y軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.

查看答案和解析>>

同步練習冊答案