【題目】在平面直角坐標系中,圓的方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程為
(1)當時,判斷直線與圓的關系;
(2)當上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P-ABCD中,△PBC為正三角形,AB⊥平面PBC,AB∥CD,AB=DC, .
(1)求證:AE∥平面PBC;
(2)求證:AE⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,在x軸的上方作半徑為1的圓Γ,與x軸相切于坐標原點O.平行于x軸的直線l1與y軸交點的縱坐標為-1,A(x,y)是圓Γ外一動點,A與圓Γ上的點的最小距離比A到l1的距離小1.
(Ⅰ)求動點A的軌跡方程;
(Ⅱ)設l2是圓Γ平行于x軸的切線,試探究在y軸上是否存在一定點B,使得以AB為直徑的圓截直線l2所得的弦長不變.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分分)已知圓有以下性質:
①過圓上一點的圓的切線方程是.
②若為圓外一點,過作圓的兩條切線,切點分別為,則直線的方程為.
③若不在坐標軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即,且平分線段.
(1)類比上述有關結論,猜想過橢圓上一點的切線方程(不要求證明);
(2)過橢圓外一點作兩直線,與橢圓相切于兩點,求過兩點的直線方程;
(3)若過橢圓外一點(不在坐標軸上)作兩直線,與橢圓相切于兩點,求證:為定值,且平分線段.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的一個對稱中心為,其圖像上相鄰兩個最高點間的距離為.
(1)求函數(shù)的解析式;
(2)用“五點作圖法”在給定的坐標系中作出函數(shù)在一個周期內的圖像,并寫出函數(shù)的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《城市規(guī)劃管理意見》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開”,這個消息在網上一石激起千層浪,各種說法不一而足.某網站為了解居民對“開放小區(qū)”認同與否,從歲的人群中隨機抽取了人進行問卷調查,并且做出了各個年齡段的頻率分布直方圖(部分)如圖所示,同時對人對這“開放小區(qū)”認同情況進行統(tǒng)計得到下表:
(Ⅰ)完成所給的頻率分布直方圖,并求的值;
(Ⅱ)如果從兩個年齡段中的“認同”人群中,按分層抽樣的方法抽取6人參與座談會,然后從這6人中隨機抽取2人作進一步調查,求這2人的年齡都在內的概率 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國時代吳國數(shù)學家趙爽所著《周髀算經》中用趙爽弦圖給出了勾股定理的絕妙證明,如圖是趙爽弦圖,圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色和黃色,若朱色的勾股形中較大的銳角α為 ,現(xiàn)向該趙爽弦圖中隨機地投擲一枚飛鏢,則飛鏢落在黃色的小正方形內的概率為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C1: 的離心率為 ,拋物線C2:x2=4y的焦點F是C1的一個頂點.
(I)求橢圓C1的方程;
(II)過點F且斜率為k的直線l交橢圓C1于另一點D,交拋物線C2于A,B兩點,線段DF的中點為M,直線OM交橢圓C1于P,Q兩點,記直線OM的斜率為k'.
(i)求證:kk'=﹣ ;
(ii)△PDF的面積為S1 , △QAB的面積為是S2 , 若S1S2=λk2 , 求實數(shù)λ的最大值及取得最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設 是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com