已知a>0且a≠1,設(shè)命題p:函數(shù)y=logax在x∈(0,+∞)上是減少的;命題q:方程x2+ax+1=0有不等的兩個實(shí)數(shù)解.若“p或q”為真,“p且q”為假,求a的取值范圍.
分析:本題考查的知識點(diǎn)是復(fù)合命題的真假判定,解決的辦法是先判斷組成復(fù)合命題的簡單命題的真假,再根據(jù)真值表進(jìn)行判斷.
解答:∵命題p:函數(shù)y=logax在x∈(0,+∞)上是減少的
∴若p為真,那么a的取值范圍是:0<a<1
又∵命題q:方程x2+ax+1=0有不等的兩個實(shí)數(shù)解
∴若q為真,那么a的取值范圍是:a>2或a<-2
∵“p或q”為真,“p且q”為假,
∴p、q一真一假
①p真q假,那么a的取值范圍:(0,1)
②p假q真,那么a的取值范圍:(-∞,-2)∪(2,+∞)
∴a的取值范圍::(-∞,-2)∪(0,1)∪(2,+∞)
點(diǎn)評:本題考查的知識點(diǎn)是復(fù)合命題的真假判定,屬于基礎(chǔ)題目
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,設(shè)p:函數(shù)y=ax在R上單調(diào)遞增,q:設(shè)函數(shù)y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數(shù)y≥1恒成立,若p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:普陀區(qū)二模 題型:解答題

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案