,乙,丙.其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰(shuí)的計(jì)算結(jié)果正確?求回歸方程.(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過(guò)1.則該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù) .現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取3個(gè).求“理想數(shù)據(jù) 的個(gè)數(shù)的分布列和數(shù)學(xué)期望.">
【題目】在國(guó)家“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研究投入.為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測(cè)數(shù)據(jù)如表所示:
試銷價(jià)格(元) | ||||||
產(chǎn)品銷量(件) |
已知變量,具有線性相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過(guò)計(jì)算求得回歸直線方程分別為:甲/span>;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.
(1)試判斷誰(shuí)的計(jì)算結(jié)果正確?求回歸方程。
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過(guò)1,則該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)”.現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取3個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
【答案】(1) 乙同學(xué)正確, (2)見(jiàn)解析
【解析】
(1)由變量,具有線性負(fù)相關(guān)關(guān)系,可知甲錯(cuò),代入樣本中心檢驗(yàn),可得乙正確。
(2)由計(jì)算可得“理想數(shù)據(jù)”共有3個(gè),可得x的取值,分別求其概率,即可寫出分布列和期望。
(1)已知變量,具有線性負(fù)相關(guān)關(guān)系,故甲不對(duì),
,,代入兩個(gè)回歸方程,驗(yàn)證乙同學(xué)正確,
故回歸方程為:;
(2)
“理想數(shù)據(jù) ”的個(gè)數(shù)取值為:;
,,
,
于是“理想數(shù)據(jù)”的個(gè)數(shù)的分布列:
數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)ABC﹣A1B1C1中,底面ABC是邊長(zhǎng)為2的等邊三角形,上、下底面的面積之比為1:4,側(cè)面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°.
(1)平面A1C1B∩平面ABC=l,證明:A1C1∥l;
(2)求平面A1C1B與平面ABC所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,滿足();數(shù)列為等差數(shù)列.且,.
(1)求數(shù)列和的通項(xiàng)公式;
(2)若為數(shù)列的前n項(xiàng)和,求滿足不等式的n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了人口規(guī)模相當(dāng)?shù)?/span>個(gè)城市采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià): (單位:元/月)和購(gòu)買總?cè)藬?shù)(單位:萬(wàn)人)的關(guān)系如表:
定價(jià)x(元/月) | 20 | 30 | 50 | 60 |
年輕人(40歲以下) | 10 | 15 | 7 | 8 |
中老年人(40歲以及40歲以上) | 20 | 15 | 3 | 2 |
購(gòu)買總?cè)藬?shù)y(萬(wàn)人) | 30 | 30 | 10 | 10 |
(Ⅰ)根據(jù)表中的數(shù)據(jù),請(qǐng)用線性回歸模型擬合與的關(guān)系,求出關(guān)于的回歸方程;并估計(jì)元/月的流量包將有多少人購(gòu)買?
(Ⅱ)若把元/月以下(不包括元)的流量包稱為低價(jià)流量包,元以上(包括元)的流量包稱為高價(jià)流量包,試運(yùn)用獨(dú)立性檢驗(yàn)知識(shí),填寫下面列聯(lián)表,并通過(guò)計(jì)算說(shuō)明是否能在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為購(gòu)買人的年齡大小與流量包價(jià)格高低有關(guān)?
定價(jià)x(元/月) | 小于50元 | 大于或等于50元 | 總計(jì) |
年輕人(40歲以下) | |||
中老年人(40歲以及40歲以上) | |||
總計(jì) |
參考公式:其中
其中
參考數(shù)據(jù):
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省確定從2021年開(kāi)始,高考采用“”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、英語(yǔ),為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開(kāi)設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生講行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計(jì) |
男生 | 50 | ||
女生 | 30 | ||
總計(jì) |
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
參考公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,上頂點(diǎn)為,原點(diǎn)O到直線的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)T在圓上,點(diǎn)A為橢圓的右頂點(diǎn),是否存在過(guò)點(diǎn)A的直線l交橢圓C于點(diǎn)B(異于點(diǎn)A),使得成立?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)擬生產(chǎn)一種如圖所示的圓柱形易拉罐(上下底面及側(cè)面的厚度不計(jì)),易拉罐的體積為,設(shè)圓柱的高度為,底面半徑為,且,假設(shè)該易拉罐的制造費(fèi)用僅與其表面積有關(guān).已知易拉罐側(cè)面制造費(fèi)用為元,易拉罐上下底面的制造費(fèi)用均為元為常數(shù)).
(1)寫出易拉罐的制造費(fèi)用(元)關(guān)于的函數(shù)表達(dá)式,并求其定義域;
(2)求易拉罐制造費(fèi)用最低時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓為左右焦點(diǎn),為短軸端點(diǎn),長(zhǎng)軸長(zhǎng)為4,焦距為,且,的面積為.
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)動(dòng)直線橢圓有且僅有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在求出點(diǎn)的坐標(biāo),若不存在.請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com