在△ABC中,角A,B,C所對的邊分別為a,b,c,且c=10,又知
cosA
cosB
=
b
a
=
4
3
,求a,b及△ABC的內(nèi)切圓的面積.
考點:正弦定理,余弦定理
專題:解三角形
分析:有余弦定理知可解得c2=a2+b2,c=10,a=
3
4
b,從而解得b=8,a=6.因為c2=a2+b2△ABC為直角三角形,再根據(jù)內(nèi)切圓的半徑等于兩條直角邊的和與斜邊的差的一半進行計算,即可求得半徑,然后利用圓的面積公式求解.
解答: 解:有余弦定理知
cosA
cosB
=
b
a
b2+c2-a2
2bc
a2+c2-b2
2ac
=
b
a
⇒c2(a2-b2)=(a2+b2)(a2-b2),
b
a
=
4
3
⇒a=
3
4
b,a2-b2≠0.
故可解得c2=a2+b2,c=10,a=
3
4
b,從而有100=
25
16
b
2
,解得b=8,a=6.
因為c2=a2+b2△ABC為直角三角形,其內(nèi)切圓半徑為
6+8-10
2
=2,故可得△ABC的內(nèi)切圓的面積為4π.
點評:本題主要考察了正弦定理、余弦定理的綜合應(yīng)用,考察了三角形內(nèi)切圓的面積的求法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+x.對于?x∈[0,1],f(x)≤1成立,試求實數(shù)a的取值范圍.
f(x)≤1?ax2+x≤1,x∈[0,1]…①
當(dāng)x=0時,a≠0,①式顯然成立;
當(dāng)x∈(0,1]時,①式化為a≤
1
x2
-
1
x
在x∈(0,1]上恒成立.
設(shè)t=
1
x
,則t∈[1,+∞),則有a≤t2-t,所以只須a≤(t2-t)min=0
⇒a≤0,又a≠0,故a<0
綜上,所求實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖如圖,若輸出的s值為兩位數(shù)時,則n的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程ρ=2sinθ,直線l的參數(shù)方程
x=3+
2
2
t
y=
2
2
t
(t為參數(shù)),以直角坐標(biāo)系的原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;
(1)求曲線C與直線l的直角坐標(biāo)方程.
(2)若M、N分別為曲線C與直線l上的兩個動點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-3,-4),B(6,3)到直線l:ax+y+1=0的距離相等,則實數(shù)a的值為( 。
A、a=-
1
3
B、a=-
7
9
C、
7
9
D、a=-
1
3
或a=-
7
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有50件產(chǎn)品,編號1-50,現(xiàn)在從中抽取5件檢驗,用系統(tǒng)抽樣方法確定所抽的編號為(  )
A、5,10,15,20,25
B、5,8,31,36,41
C、5,15,25,35,45
D、2,14,26,38,50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x2+ax-
a
4
+
1
2
,x∈[0,1],
(1)求f (x)的最大值g(a);
(2)求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,若E是B1D1的中點,則直線BE垂直于( 。
A、AC
B、BD
C、A1D
D、A1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)內(nèi)的向量
a
=(1,3),
b
=(m,2m-3),若該平面內(nèi)不是所有的向量都能寫成x
a
+y
b
(x,y∈R)的形式,則m的值為(  )
A、-
9
7
B、
9
7
C、-3
D、3

查看答案和解析>>

同步練習(xí)冊答案