【題目】已知在四棱錐P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)若PA=1,求點(diǎn)E到平面PFD的距離.
【答案】
(1)證明:連接AF,則AF= ,DF= ,
又AD=2,∴DF2+AF2=AD2,∴DF⊥AF,
又PA⊥平面ABCD,∴DF⊥PA,又PA∩AF=A,
∴DF⊥平面PAF,
又PF平面PAF,
∴DF⊥PF.
(2)解:∵S△EFD=2﹣ = ,
∴VP﹣EFD= = ,
∵VE﹣PFD=VP﹣AFD,
∴ ,解得h= ,即點(diǎn)E到平面PFD的距離為 .
【解析】(1)連接AF,通過(guò)計(jì)算利用勾股定理證明DF⊥AF,證明DF⊥PA,推出DF⊥平面PAF,然后證明DF⊥PF.(2)利用等體積方法,求點(diǎn)E到平面PFD的距離.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直線與平面垂直的性質(zhì),掌握垂直于同一個(gè)平面的兩條直線平行即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】濮陽(yáng)市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬(wàn)元)的數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號(hào)x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測(cè)該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計(jì)公式分別為: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,則對(duì)于命題p:abcd∈(0,1)和命題q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判斷,正確的是( )
A.p假q真
B.p假q假
C.p真q真
D.p真q假
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三條直線l1:4x+y-4=0,l2:mx+y=0,l3:2x-3my-4=0.
(1)若直線l1,l2,l3交于一點(diǎn),求實(shí)數(shù)m的值;
(2)若直線l1,l2,l3不能圍成三角形,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= (|AB|為線段AB的長(zhǎng)度)叫做曲線y=f(x)在點(diǎn)A與點(diǎn)B之間的“彎曲度”,給出以下命題: ①函數(shù)y=x3圖象上兩點(diǎn)A與B的橫坐標(biāo)分別為1和﹣1,則φ(A,B)=0;
②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
③設(shè)點(diǎn)A,B是拋物線y=x2+1上不同的兩點(diǎn),則φ(A,B)≤2;
④設(shè)曲線y=ex(e是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn)A(x1 , y1),B(x2 , y2),則φ(A,B)<1.
其中真命題的序號(hào)為 . (將所有真命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加較合適?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于的一元二次方程. .
(1)若是從0、1、2、3四個(gè)數(shù)中任取的一個(gè)數(shù), 是從0、1、2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)數(shù)根的概率;
(2)若是從區(qū)間任取的一個(gè)數(shù), 是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)數(shù)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com