已知復(fù)數(shù)z1=2+ai(a∈R),z2=1-2i,若
z1
z2
為純虛數(shù),則|z1|=( 。
A、
2
B、
3
C、2
D、
5
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,復(fù)數(shù)求模
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,然后利用復(fù)數(shù)模的計(jì)算公式得答案.
解答: 解:∵z1=2+ai(a∈R),z2=1-2i,
z1
z2
=
2+ai
1-2i
=
(2+ai)(1+2i)
5
=
2-2a+(4+a)i
5
,
z1
z2
為純虛數(shù),則
2-2a=0
4+a≠0
,解得a=1,
則z1=2+i,
∴|z1|=
5

故選:D.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC 中,若bcosA=acosB,則該三角形是(  )
A、等腰三角形
B、銳角三角形
C、等腰直角三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
a
x
的圖象的經(jīng)過點(diǎn)(2,1)
(1)求a的值;
(2)判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(3x+1)的定義域是( 。
A、(-
1
3
,1)
B、(-
1
3
,+∞)
C、(-
1
3
1
3
D、(-∞,-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>
5
4
,則-(4x+
1
4x-5
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+4x+3.
(1)若f(x)的定義域?yàn)閇-3,2],寫出f(x)的單調(diào)區(qū)間,并指出其單調(diào)性(不要求證明);
(2)若f(ax+b)=x2+10x+24,其中a,b為常數(shù),求5a-b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求Sn;
(Ⅲ)設(shè)bn=
Sn-3
3n
,試求數(shù)列{bn}的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正六棱柱的最大對(duì)角面的面積為4m2,互相平行的兩個(gè)側(cè)面的距離為2m,則這個(gè)六棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x2+2x,若存在實(shí)數(shù)a,b(0<a<b),使f(x)在[a,b]上的值域是[
1
b
1
a
].則b-a的最小值是( 。
A、
1-
5
2
B、
5
-1
2
C、
-3+
5
2
D、
3+
5
2

查看答案和解析>>

同步練習(xí)冊(cè)答案