已知離散型隨機變量ξ1的概率分布為

ξ1

1

2

3

4

5

6

7

P

離散型隨機變量ξ2的概率分布為

ξ2

3.7

3.8

3.9

4

4.1

4.2

4.3

P

求這兩個隨機變量數(shù)學期望、方差與標準差.

 

4;4;0.2.

【解析】E(ξ1)=1×+2×+…+7×=4;

V(ξ1)=(1-4)2×+(2-4)2×+…+(7-4)2×=4,σ1==2.

E(ξ2)=3.7×+3.8×+…+4.3×=4;

V(ξ2)=0.04,σ2=)=0.2.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第4課時練習卷(解析版) 題型:填空題

下圖是某公司10個銷售店某月銷售某產(chǎn)品數(shù)量(單位:臺)的莖葉圖,則數(shù)據(jù)落在區(qū)間[22,30)內(nèi)的概率為________.

1

8

9

 

 

 

2

1

2

2

7

9

3

0

0

3

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第1課時練習卷(解析版) 題型:填空題

如下給出的是一個與定義在R上f(x)=x3+sinx相關的算法語言,一個公差不為零的等差數(shù)列{an},使得該程序能正常運行且輸出的結果恰好為0,請寫出一個符合條件的數(shù)列{an}的通項公式_______.

n←1 S←0

While i≤10

x←an

S←S+f(x)

n←n+1

End Whlie

Print S

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第6課時練習卷(解析版) 題型:解答題

將一枚硬幣拋擲6次,求正面次數(shù)與反面次數(shù)之差ξ的概率分布列,并求出ξ的期望Eξ.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第6課時練習卷(解析版) 題型:解答題

甲、乙兩名射手在一次射擊中的得分為兩個相互獨立的隨機變量ξ和η,且ξ、η分布列為

ξ

1

2

3

P

a

0.1

0.6

 

η

1

2

3

P

0.3

b

0.3

(1)求a、b的值;

(2)計算ξ、η的期望和方差,并以此分析甲、乙的技術狀況.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第6課時練習卷(解析版) 題型:填空題

某單位有一臺電話交換機,其中有8個分機.設每個分機在1h內(nèi)平均占線10min,并且各個分機是否占線是相互獨立的,則任一時刻占線的分機數(shù)目X的數(shù)學期望為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第5課時練習卷(解析版) 題型:解答題

甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結束,除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是,假設各局比賽結果相互獨立.

(1)分別求甲隊以3∶0,3∶1,3∶2勝利的概率;

(2)若比賽結果為3∶0或3∶1,則勝利方得3分,對方得0分;若比賽結果為3∶2,則勝利方得2分、對方得1分.求乙隊得分X的分布列.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第4課時練習卷(解析版) 題型:解答題

如圖,從A1(1,0,0)、A2(2,0,0)、B1(0,1,0)、B2(0,2,0)、C1(0,0,1)、C2(0,0,2)這6個點中隨機選取3個點,將這3個點及原點O兩兩相連構成一個“立體”,記該“立體”的體積為隨機變量V(如果選取的3個點與原點在同一個平面內(nèi),此時“立體”的體積V=0).

(1)求V=0的概率;

(2)求V的分布列及數(shù)學期望E(V).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第9課時練習卷(解析版) 題型:填空題

已知拋物線y2=2px,以過焦點的弦為直徑的圓與拋物線準線的位置關系是________.

 

查看答案和解析>>

同步練習冊答案