設(shè)m,n∈R,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是( )
A.[1-,1+]
B.(-∞,1-]∪[1+,+∞)
C.[2-2,2+2]
D.(-∞,2-2]∪[2+2,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省廈門市高三5月適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
“”是 “”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省三明市高三5月質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:選擇題
直線與圓相交所得線段的長(zhǎng)度為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練四(解析版) 題型:選擇題
要得到函數(shù)y=sin的圖象,只需將函數(shù)y=sin 2x的圖象( )
A.向左平移個(gè)單位
B.向右平移個(gè)單位
C.向左平移個(gè)單位
D.向右平移個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練六(解析版) 題型:填空題
已知函數(shù)f(x)=-3x2+ax+b,若a,b都是區(qū)間[0,4]內(nèi)任取的一個(gè)數(shù),那么f(1)>0的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練六(解析版) 題型:選擇題
若數(shù)列{an}滿足-=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為“調(diào)和數(shù)列”.已知正項(xiàng)數(shù)列{}為“調(diào)和數(shù)列”,且b1+b2+…+b9=90,則b4·b6的最大值是( )
A.10 B.100 C.200 D.400
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練五(解析版) 題型:填空題
若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸相切,則該圓的標(biāo)準(zhǔn)方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練二(解析版) 題型:選擇題
設(shè)函數(shù)f(x)=x-2msin x+(2m-1)sin xcos x(m為實(shí)數(shù))在(0,π)上為增函數(shù),則m的取值范圍為( )
A.[0,] B.(0,) C.(0,] D.[0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com