【題目】已知橢圓的中心在原點,離心率等于,它的一個短軸端點恰好是拋物線的焦點.
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點,是橢圓上位于直線兩側的動點.
①若直線的斜率為,求四邊形面積的最大值;
②當運動時,滿足,試問直線的斜率是否為定值,請說明理由.
【答案】(1);(2)直線的斜率為定值。
【解析】試題分析:
(1)由拋物線的焦點坐標可得,再結合離心率可求得,從而可得橢圓的方程.(2)①設直線方程為,,將直線方程與橢圓方程聯(lián)立消元后可得,然后由四邊形的特點得,根據(jù)函數(shù)的知識可得的最大值.②由可得直線的斜率之和為0,設的方程為,與橢圓方程聯(lián)立消元后可得,同理,然后根據(jù)斜率公式求得直線AB的斜率驗證即可.
試題解析:
(1)由題意得拋物線的焦點為,
∴,
∵,
∴
∴,
∴橢圓的方程為.
(2)①由題意設直線方程為,
由消去y整理得,
∵直線AB與橢圓交于兩點,
∴,解得.
設,
則,
又,
∴,
∴當時,取得最大,
即四邊形面積的最大值為.
②當時,直線的斜率之和為0,
設直線的斜率為,則直線的斜率為,
故直線的方程為,
由消去y整理得
,
∴,
同理.
∴,
∴,
故直線的斜率為定值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,是上的一點.
(1)求證:平面平面;
(2)若是的中點,,且直線與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求a的值,并證明是R上的增函數(shù);
(2)若關于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓()的左頂點,左焦點是線段的中點,拋物線的準線恰好過點.
(1)求橢圓的方程;
(2)如圖所示,過點作斜率為的直線交橢圓于點,交軸于點,若為線段的中點,過作與直線垂直的直線,證明對于任意的(),直線過定點,并求出此定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中, , ,以為直徑的圓記為圓,圓過原點的切線記為,若以原點為極點, 軸正半軸為極軸建立極坐標系.
(1)求圓的極坐標方程;
(2)若過點,且與直線垂直的直線與圓交于, 兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡紅包的手機用戶中隨機抽取2000名進行調查,將受訪用戶按年齡分成5組: 并整理得到如下頻率分布直方圖:
(1)求的值;
(2)從春節(jié)期間參與收發(fā)網(wǎng)絡紅包的手機用戶中隨機抽取一人,估計其年齡低于40歲的概率;
(3)估計春節(jié)期間參與收發(fā)網(wǎng)絡紅包的手機用戶的平均年齡.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取人對共享產(chǎn)品對共享產(chǎn)品是否對日常生活有益進行了問卷調查,并對參與調查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:
(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系?
(Ⅱ)現(xiàn)按照分層抽樣從認為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.
參考公式: .
臨界值表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】采用系統(tǒng)抽樣方法從人中抽取人做問卷調查,為此將他們隨機編號為,,,,分組后某組抽到的號碼為41.抽到的人中,編號落入?yún)^(qū)間 的人數(shù)為( )
A. 10 B. C. 12 D. 13
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為 (為參數(shù))
寫出直線的普通方程與曲線的直角坐標方程;
(2)設曲線經(jīng)過伸縮變換后得到曲線,設為上任意一點,
求的最小值,并求相應的點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com