設等比數(shù)列{an}滿足條件:對任何正整數(shù)n,其前n項和Sn恒等于an+1 a1,則這樣的等比數(shù)列(    )

A.不存在                            B.必定存在,其公比可定,但首項不定

C.必定存在,其首項可定,但公比不定  D.必定存在,但首項與公比均不定

 

【答案】

B

【解析】解:因為

這樣首項為正時,則可知滿足不等式的公比q必然存在。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}滿足:Sn=2n+a(n∈N+).
(I)求數(shù)列{an}的通項公式,并求最小的自然數(shù)n,使an>2010;
(II)數(shù)列{bn}的通項公式為bn=-
nan
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}滿足公比q∈N*,an∈N*,且{an}中的任意兩項之積也是該數(shù)列中的一項,若a1=281,則q的所有可能取值的集合為
{281,227,29,23,2}
{281,227,29,23,2}

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市海門中學高三(上)開學檢測數(shù)學試卷(解析版) 題型:填空題

設等比數(shù)列{an}滿足公比q∈N*,an∈N*,且{an}中的任意兩項之積也是該數(shù)列中的一項,若a1=281,則q的所有可能取值的集合為   

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年浙江省溫州中學高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

設等比數(shù)列{an}滿足:Sn=2n+a(n∈N+).
(I)求數(shù)列{an}的通項公式,并求最小的自然數(shù)n,使an>2010;
(II)數(shù)列{bn}的通項公式為bn=-,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案