精英家教網 > 高中數學 > 題目詳情

若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點均在第二象限內,a的取值范圍為(  )

(A)(-,-2) (B)(-,-1)

(C)(1,+) (D)(2,+)

 

D

【解析】曲線C的方程可化為(x+a)2+(y-2a)2=4,則該方程表示圓心為(-a,2a),半徑等于2的圓.因為圓上的點均在第二象限內,所以a>2.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十第八章第一節(jié)練習卷(解析版) 題型:選擇題

已知△ABC三頂點坐標A(1,2),B(3,6),C(5,2),MAB中點,NAC中點,則直線MN的方程為(  )

(A)2x+y-8=0 (B)2x-y+8=0

(C)2x+y-12=0 (D)2x-y-12=0

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十八第八章第九節(jié)練習卷(解析版) 題型:選擇題

已知拋物線y=-x2+3上存在關于直線x+y=0對稱的相異兩點A,B,|AB|等于(  )

(A)3 (B)4 (C)3 (D)4

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:解答題

如圖,

在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內接四邊形ABCD的對角線ACBD互相垂直,ACBD分別在x軸和y軸上.

(1)求證:F<0.

(2)若四邊形ABCD的面積為8,對角線AC的長為2,·=0,D2+E2-4F的值.

(3)設四邊形ABCD的一條邊CD的中點為G,OHAB且垂足為H.試用平面解析幾何的研究方法判斷點O,G,H是否共線,并說明理由.

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:選擇題

a為任意實數時,直線(a-1)x-y+a+1=0恒過定點C,則以C為圓心,為半徑的圓的方程為(  )

(A)x2+y2-2x+4y=0 (B)x2+y2+2x+4y=0

(C)x2+y2+2x-4y=0 (D)x2+y2-2x-4y=0

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:解答題

給定橢圓C:+=1(a>b>0),稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.

(1)求橢圓C的方程和其“準圓”的方程.

(2)P是橢圓C的“準圓”上的一個動點,過動點P作直線l1,l2使得l1,l2與橢圓C都只有一個交點,l1,l2分別交其“準圓”于點M,N.

①當P為“準圓”與y軸正半軸的交點時,l1,l2的方程;

②求證:|MN|為定值.

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:選擇題

已知拋物線方程為y2=4x,直線l的方程為x-y+4=0,在拋物線上有一動點Py軸的距離為d1,P到直線l的距離為d2,d1+d2的最小值為(  )

(A)+2 (B)+1 (C)-2 (D)-1

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:選擇題

若直線2x-y+a=0與圓(x-1)2+y2=1有公共點,則實數a的取值范圍是(  )

(A)-2-<a<-2+

(B)-2-a-2+

(C)-a

(D)-<a<

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)二十第三章第四節(jié)練習卷(解析版) 題型:選擇題

如圖,為了研究鐘表與三角函數的關系,建立了如圖所示的坐標系,設秒針針尖位置P(x,y).若初始位置為P0(,),當秒針從P0(:此時t=0)正常開始走時,P的縱坐標y與時間t的函數關系為(  )

(A)y=sin(t+) (B)y=sin(-t-)

(C)y=sin(-t+) (D)y=sin(-t-)

 

查看答案和解析>>

同步練習冊答案