【題目】下列四個(gè)命題中,正確的是( )
A.奇函數(shù)的圖象一定過原點(diǎn)
B.y=x2+1(﹣4<x≤4)是偶函數(shù)
C.y=|x+1|﹣|x﹣1|是奇函數(shù)
D.y=x+1是奇函數(shù)

【答案】C
【解析】解:根據(jù)題意,依次分析選項(xiàng):

對于A、當(dāng)奇函數(shù)的定義域不含有0時(shí),其圖象不過原點(diǎn),如y= ,故A錯(cuò)誤;

對于B、y=x2+1(﹣4<x≤4),其定義域不關(guān)于原點(diǎn)對稱,不是偶函數(shù),故B錯(cuò)誤;

對于C、y=|x+1|﹣|x﹣1|= ,分析可得有f(﹣x)=﹣f(x),為奇函數(shù),故C正確;

對于D、對于函數(shù)y=x+1,f(﹣x)=﹣f(x)不成立,不是奇函數(shù),故D錯(cuò)誤;

故選:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系,以及對函數(shù)奇偶性的性質(zhì)的理解,了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使得|f(x)|≤M|x|對一切的實(shí)數(shù)x都成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù): ①f(x)=2x,
②f(x)=x2+1,
③f(x)=sinx+cosx,
④f(x)= ,
⑤f(x)是定義在實(shí)數(shù)集上的奇函數(shù),且對一切的x1 , x2均有|f(x1)﹣f(x2)|≤2|x1﹣x2|.
其中是“倍約束函數(shù)”的有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在[﹣1,1]上的奇函數(shù)f(x)滿足當(dāng)0<x≤1時(shí),f(x)= ,
(1)求f(x)在[﹣1,1]上的解析式;
(2)判斷并證明f(x)在[﹣1,0)上的單調(diào)性;
(3)當(dāng)x∈(0,1]時(shí),方程 ﹣2x﹣m=0有解,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=CD=1,BD= ,BD⊥CD.將四邊形ABCD沿對角線BD折成四面體A′﹣BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是(

A.A′C⊥BD
B.∠BA′C=90°
C.CA′與平面A′BD所成的角為30°
D.四面體A′﹣BCD的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p: ,命題q:x∈R,x2﹣2ax+2﹣a=0,若命題“p∧q”是真命題,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣2]∪{1}
B.(﹣∞,﹣2]∪[1,2]
C.[1,+∞)
D.[﹣2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1 , F2在坐標(biāo)軸上,離心率為 ,且過點(diǎn)(4,﹣ ),點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:MF1⊥MF2;
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:x2+y2=16和圓C2:(x﹣7)2+(y﹣4)2=4,
(1)求過點(diǎn)(4,6)的圓C1的切線方程;
(2)設(shè)P為坐標(biāo)平面上的點(diǎn),且滿足:存在過點(diǎn)P的無窮多對互相垂直的直線l1和l2 , 它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長是直線l2被圓C2截得的弦長的2倍.試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知下列三個(gè)方程x2+4ax﹣4a+3=0,x2+(a﹣1)x+a2=0,x2+2ax﹣2a=0至少有一個(gè)方程有實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的左、右焦點(diǎn)分別為F1、F2 , P為C的右支上一點(diǎn),且|PF2|=|F1F2|,則 等于(
A.24
B.48
C.50
D.56

查看答案和解析>>

同步練習(xí)冊答案