【題目】已知函數(shù)f(x)=﹣x2+ax+1﹣lnx.
(1)當a=3時,求函數(shù)f(x)的單調遞增區(qū)間;
(2)若f(x)在區(qū)間(0, )上是減函數(shù),求實數(shù)a的取值范圍.

【答案】
(1)解:當a=3時,f(x)=﹣x2+3x+1﹣lnx

解f′(x)>0,

即:2x2﹣3x+1<0

函數(shù)f(x)的單調遞增區(qū)間是


(2)解:f′(x)=﹣2x+a﹣ ,

∵f(x)在 上為減函數(shù),

∴x∈ 時﹣2x+a﹣ ≤0恒成立.

即a≤2x+ 恒成立.

,則

∵x∈ 時, >4,

∴g′(x)<0,

∴g(x)在 上遞減,

∴g(x)>g( )=3,

∴a≤3


【解析】(1)求單調區(qū)間,先求導,令導函數(shù)大于等于0即可.(2)已知f(x)在區(qū)間(0, )上是減函數(shù),即f′(x)≤0在區(qū)間(0, )上恒成立,然后用分離參數(shù)求最值即可.
【考點精析】通過靈活運用函數(shù)的單調性和函數(shù)單調性的性質,掌握注意:函數(shù)的單調性是函數(shù)的局部性質;函數(shù)的單調性還有單調不增,和單調不減兩種;函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-5:不等式選講】

已知函數(shù)f(x)=|x+1|+|x-3|.

(1)若關于x的不等式f(x)<a有解,求實數(shù)a的取值范圍:

(2)若關于x的不等式f(x)<a的解集為(b, ),求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集為實數(shù)集R,函數(shù)f(x)=lg(2x﹣1)的定義域為A,集合B={x||x|﹣a≤0}(a∈R)
(1)若a=2,求A∪B和A∩B
(2)若RA∪B=RA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAABPABC,ABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD;

(2)求證:平面BDE平面PAC

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=a( x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠,則實數(shù)c的取值范圍為(
A.(0,4)
B.[0,4]
C.(0,4]
D.[0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△OAB中,點P為線段AB上的一個動點(不包含端點),且滿足

(1)若λ= ,用向量 , 表示 ;
(2)若| |=4,| |=3,且∠AOB=60°,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)y=2sin( + ),x∈R的圖象,只需要把函數(shù)y=2sinx,x∈R的圖象上所有的點(
A.向左平移 個單位,再把所得各點的橫坐標縮短為原來的 倍(縱坐標不變)
B.向右平移 個單位,再把所得各點的橫坐標縮短為原來的 倍(縱坐標不變)
C.向左平移 個單位,再把所得各點的橫坐標縮短為原來的3倍(縱坐標不變)
D.向右平移 個單位,再把所得各點的橫坐標縮短為原來的3倍(縱坐標不變)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.已知購買一張彩票中獎的概率為 ,則購買1000張這種彩票一定能中獎
B.互斥事件一定是對立事件
C.如圖,直線l是變量x和y的線性回歸方程,則變量x和y相關系數(shù)在﹣1到0之間
D.若樣本x1 , x2 , …xn的方差是4,則x1﹣1,x2﹣1,…xn﹣1的方差是3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,現(xiàn)要在邊長為100m的正方形ABCD內建一個交通“環(huán)島”.以正方形的四個頂點為圓心在四個角分別建半徑為xm(x不小于9)的扇形花壇,以正方形的中心為圓心建一個半徑為 m的圓形草地.為了保證道路暢通,島口寬不小于60m,繞島行駛的路寬均小于10m.

(1)求x的取值范圍;(運算中 取1.4)
(2)若中間草地的造價為a元/m2 , 四個花壇的造價為 元/m2 , 其余區(qū)域的造價為 元/m2 , 當x取何值時,可使“環(huán)島”的整體造價最低?

查看答案和解析>>

同步練習冊答案