分析 可設雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,由題意可得|CD|=c,設C在第一象限,由x=$\frac{c}{2}$,代入雙曲線的方程,可得C的坐標,再由條件$\overrightarrow{AE}=\frac{2}{5}\overrightarrow{AC}$,可得$\overrightarrow{AE}$=$\frac{2}{3}$$\overrightarrow{EC}$,運用向量共線的坐標表示,求得E的坐標,代入雙曲線的方程,由離心率公式計算即可得到所求值.
解答 解:可設雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1.
由2c=|AB|=2|CD|,可得|CD|=c,
設C在第一象限,
由x=$\frac{c}{2}$,可得y=b$\sqrt{\frac{{c}^{2}}{4{a}^{2}}-1}$,
即有C($\frac{1}{2}$c,b$\sqrt{\frac{{c}^{2}}{4{a}^{2}}-1}$),
又設A(-c,0),
$\overrightarrow{AE}=\frac{2}{5}\overrightarrow{AC}$,即為$\overrightarrow{AE}$=$\frac{2}{3}$$\overrightarrow{EC}$,
可得E($\frac{-c+\frac{2}{3}•\frac{1}{2}c}{1+\frac{2}{3}}$,$\frac{b\sqrt{\frac{{c}^{2}}{4{a}^{2}}-1}}{1+\frac{2}{3}}$),
即為(-$\frac{2}{5}$c,$\frac{3}{5}$b$\sqrt{\frac{{c}^{2}}{4{a}^{2}}-1}$),
代入雙曲線的方程,可得$\frac{4}{25}$•$\frac{{c}^{2}}{{a}^{2}}$-$\frac{9}{25}$($\frac{{c}^{2}}{4{a}^{2}}$-1)=1,
由e=$\frac{c}{a}$,可得4e2-$\frac{9}{4}$e2=16,解得e=$\frac{8\sqrt{7}}{7}$.
故答案為:$\frac{8\sqrt{7}}{7}$.
點評 本題考查雙曲線的離心率的求法,注意運用向量的坐標表示,點滿足雙曲線的方程,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | (0,e] | C. | $({-∞,\frac{1}{e}}]$ | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com