A. | 1 | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 利用三角形面積公式表示出S,利用余弦定理表示出cosC,變形后代入已知等式,化簡求出cosC的值,進而求出sinC的值,利用兩角和的正弦函數公式即可計算得解.
解答 解:∵S=$\frac{1}{2}$absinC,cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
∴2S=absinC,a2+b2-c2=2abcosC,
代入已知等式得:4S=a2+b2-c2+2ab,即2absinC=2abcosC+2ab,
∵ab≠0,∴sinC=cosC+1,
∵sin2C+cos2C=1,
∴2cos2C+2cosC=0,解得:cosC=-1(不合題意,舍去),cosC=0,
∴sinC=1,
則sin($\frac{π}{4}$+C)=$\frac{\sqrt{2}}{2}$(sinC+cosC)=$\frac{\sqrt{2}}{2}$.
故選:C.
點評 此題考查了余弦定理,三角形面積公式,以及同角三角函數間的基本關系,兩角和的正弦函數公式的應用,熟練掌握余弦定理是解本題的關鍵,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $(-1,\frac{3}{2})$ | B. | (-3,+∞) | C. | (3,+∞) | D. | $(\frac{3}{2},+∞)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1<a≤0 | B. | -1<a<0 | C. | a>-1 | D. | 0<a≤1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com