8.設復數(shù)z1,z2在復平面內對應的點關于實軸對稱,z1=2+i,則$\frac{{z}_{1}}{{z}_{2}}$( 。
A.1+iB.$\frac{3}{5}$+$\frac{4}{5}$iC.1+$\frac{4}{5}$iD.1+$\frac{4}{3}$i

分析 利用復數(shù)的運算法則、共軛復數(shù)的定義即可得出.

解答 解:∵復數(shù)z1,z2在復平面內對應的點關于實軸對稱,z1=2+i,
∴z2=$\overline{{z}_{1}}$=2-i,
則$\frac{{z}_{1}}{{z}_{2}}$=$\frac{2+i}{2-i}$=$\frac{(2+i)^{2}}{(2-i)(2+i)}$=$\frac{3+4i}{5}$,
故選:B.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.頂點在原點,準線方程為$x=-\frac{1}{16}$的拋物線標準方程是( 。
A.4y2=-xB.4y2=xC.y2=-4xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知α,β是平面,m,n是直線.下列命題中不正確的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥α,m?β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,已知AB=1,AC=2,∠A=60°,若點P滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+$λ\overrightarrow{AC}$,且$\overrightarrow{BP}$•$\overrightarrow{CP}$=1,則實數(shù)λ的值為-$\frac{1}{4}$或1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.平面內有三點A(0,-3),B(3,3),C(x,-1),且$\overrightarrow{AB}$∥$\overrightarrow{AC}$,則x為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=ex-ax+b(a,b∈R).
(1)若f(x)在x=0處的極小值為2,求a,b的值;
(2)設g(x)=f(x)+ln(x+1),當x≥0時,g(x)≥1+b,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若函數(shù)f(x)=x(x-1)(x+a)為奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.過點H(1,-1)作拋物線Γ:x2=4y的兩條切線HA、HB,切點分別為A,B,則以線段AB為直徑的圓方程為${(x-1)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=2lnx-3x2-11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成立,求整數(shù)a的最小值.

查看答案和解析>>

同步練習冊答案