集合A={斜棱柱},B={直棱柱},C={正棱柱},D={長(zhǎng)方體},下面命題中正確的是(   )
A.CBDB.A∪C={棱柱}
C.C∩D={正棱柱}D.BD
C
A、D根據(jù)斜棱柱、直棱柱、正棱柱的概念知:
ABC,BD,故A、D不正確.
B由棱柱的分類(lèi)知:
A∪B={棱柱},而不是A∪C={棱柱}.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在三棱錐S,,。
(1)證明
(2)求側(cè)面與底面所成二面角的大小。
(3)求異面直線SC與AB所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示, 在三棱柱中, 底面,.

(1)若點(diǎn)分別為棱的中點(diǎn),求證:平面;
(2) 請(qǐng)根據(jù)下列要求設(shè)計(jì)切割和拼接方法:要求用平行于三棱柱的某一條側(cè)棱的平面去截此三棱柱,切開(kāi)后的兩個(gè)幾何體再拼接成一個(gè)長(zhǎng)方體. 簡(jiǎn)單地寫(xiě)出一種切割和拼接方法,并寫(xiě)出拼接后的長(zhǎng)方體的表面積(不必寫(xiě)出計(jì)算過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如右圖P、Q分別是A1B1、BB1的四等分點(diǎn),M、N分別是D1C1、CC1的中點(diǎn).沿M→N→Q→P截去一部分,截去的幾何體是什么?剩下的幾何體也是嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓柱的底面半徑為r=10,高h(yuǎn)=20,一只螞蟻?zhàn)韵碌酌娴腁點(diǎn)爬到上底面的B′點(diǎn),且的長(zhǎng)度是上底面圓周長(zhǎng)的,求由A爬到B的最短路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中,正確的是(   )
A.球面上的四個(gè)不同點(diǎn),一定不在同一平面內(nèi)
B.球面上兩點(diǎn)的球面距離,是連結(jié)這兩點(diǎn)的線段的長(zhǎng)
C.球面上兩點(diǎn)的球面距離,是過(guò)這兩點(diǎn)的大圓弧長(zhǎng)
D.用不過(guò)球心的平面截球,球心和截面圓心的連線垂直于截面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

四棱錐中,底面是一個(gè)矩形,,,又,
(1)求四棱錐的體積;
(2)求二面角的大。ㄓ梅慈呛瘮(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,四棱錐P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點(diǎn),又二面角P—CD—B為45°.
(1)求證:AF∥平面PEC;
(2)求證:平面PEC⊥平面PCD;
(3)設(shè)AD=2,CD=2,求點(diǎn)A到平面PEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示, 四棱錐PABCD底面是直角梯形, 底面ABCD, EPC的中點(diǎn), PAADAB=1.

(1)證明: ;
(2)證明: ;
(3)求三棱錐BPDC的體積V.

查看答案和解析>>

同步練習(xí)冊(cè)答案