【題目】如圖,在以A,B,C,D,E,F為頂點(diǎn)的多面體中,四邊形是菱形,
(1)求證:平面ABC⊥平面ACDF
(2)求平面AEF與平面ACE所成的銳二面角的余弦值
【答案】(1)見解析(2)
【解析】
(1)設(shè)是中點(diǎn),連結(jié)、、,推導(dǎo)出,,則是二面角的平面角,由此能證明平面平面;(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成的銳二面角的余弦值.
證明:(1)設(shè)是中點(diǎn),連結(jié)、、,
在中,,,
四邊形是菱形,,
是等邊三角形,,
是二面角的平面角,
在中,,,
,,
又,,
,
平面平面.
解:(2)由(1)知、、兩兩垂直,以為原點(diǎn),為軸,為軸,
為軸,建立空間直角坐標(biāo)系,
則,,,,0,,,,,,0,,
,,,,,,
,,又平面,平面,
平面,平面,
平面,平面,
又,平面平面,
,、、、四點(diǎn)共面,
又平面平面,平面平面,
,四邊形是平行四邊形,
,,
,,
設(shè)平面的法向量,,,
則,取,得,
設(shè)平面的法向量,,,
則,取,得,
設(shè)平面與平面所成的銳二面角為,
則.
平面與平面所成的銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1:,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心極坐標(biāo)為(3,π),半徑為1的圓.
(1)求曲線C1的參數(shù)方程和C2的直角坐標(biāo)方程;
(2)設(shè)M,N分別為曲線C1,C2上的動(dòng)點(diǎn),求|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.
(1)若a=1.解不等式f(x)≤x2﹣1;
(2)若a>0,b>0,c>0.且f(x)的最小值為4﹣b﹣c.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M:1(a>b>0)的長軸長為2,離心率為,過點(diǎn)(0,1)的直線l與M交于A,B兩點(diǎn),且.
(1)求M的方程;
(2)求點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,
(1)求直線l的普通方程及曲線C的直角坐標(biāo)方程;
(2)直線l與x軸交于點(diǎn)P,與曲線C交于A,B兩點(diǎn),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理“冪勢既同,則積不容異”中的“冪”指面積,“勢”即是高,意思是:若兩個(gè)等高的幾何體在所有等高處的水平截面的面積恒等,則這兩幾何體的體積相等.設(shè)夾在兩個(gè)平行平面之間的幾何體的體積分別為,它們被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為,則“恒成立”是“”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)是坐標(biāo)原點(diǎn)的拋物線的焦點(diǎn)在軸正半軸上,圓心在直線上的圓與軸相切,且關(guān)于點(diǎn)對(duì)稱.
(1)求和的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線與交于,與交于,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若四面體的三組對(duì)棱分別相等,即,,,則________.(寫出所有正確結(jié)論的編號(hào))
①四面體每個(gè)面的面積相等
②四面體每組對(duì)棱相互垂直
③連接四面體每組對(duì)棱中點(diǎn)的線段相互垂直平分
④從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱的長都可以作為一個(gè)三角形的三邊長
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com