【題目】ABC中, ,的最大值為__________

【答案】

【解析】acosBbcosA=c,

結(jié)合正弦定理,得sinAcosBsinBcosA=sinC,

∵C=π﹣(A+B),得sinC=sin(A+B)

sinAcosBsinBcosA=sinAcosB+cosAsinB

整理,得sinAcosB=4sinBcosA,同除以cosAcosB,得tanA=4tanB

由此可得tanAB=

∵A、B是三角形內(nèi)角,且tanAtanB同號

∴A、B都是銳角,即tanA>0,tanB>0

+4tanB≥4

tanAB=,當(dāng)且僅當(dāng)=4tanB,即tanB=時,tanAB的最大值為.

故答案為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校某班在一次數(shù)學(xué)測驗中,全班N名學(xué)生的數(shù)學(xué)成績的頻率分布直方圖如下,已知分?jǐn)?shù)在110~120的學(xué)生有14人.

(1)求總?cè)藬?shù)N和分?jǐn)?shù)在120~125的人數(shù)n;

(2)利用頻率分布直方圖,估算該班學(xué)生數(shù)學(xué)成績的眾數(shù)和中位數(shù)各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標(biāo)準(zhǔn)是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.

(Ⅰ)求甲乙兩人所付的車費相同的概率;

)設(shè)甲乙兩人所付的車費之和為隨機變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生的身體狀況,某校隨機抽取了一批學(xué)生測量體重.經(jīng)統(tǒng)計,這批學(xué)生的體重數(shù)據(jù)(單位:千克)全部介于之間,將數(shù)據(jù)分成以下組:第,第,第,第,第,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第, 組中隨機抽取名學(xué)生做初檢.

)求每組抽取的學(xué)生人數(shù).

)若從名學(xué)生中再次隨機抽取名學(xué)生進(jìn)行復(fù)檢,求這名學(xué)生不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, , , 平面, , 的中點為

)求證:

)求證:平面平面

)當(dāng)為何值時,能使?請給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

(1)若,求的周長(結(jié)果精確到0.01米);

(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積,的面積盡可能大,當(dāng)為何值時,該活動室面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是由一平面內(nèi)的個向量組成的集合,且的模不小于中除外的所有向量和的模.則稱的極大向量.有下列命題:

中每個向量的方向都相同,則中必存在一個極大向量;

給定平面內(nèi)兩個不共線向量,在該平面內(nèi)總存在唯一的平面向量,使得中的每個元素都是極大向量;

③若中的每個元素都是極大向量,且中無公共元素,則中的每一個元素也都是極大向量.

其中真命題的序號是_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某單位職工的月收入情況畫出的樣本頻率分布直方圖,已知圖中第一組的頻數(shù)為4 000,請根據(jù)該圖提供的信息,解答下列問題.

(1)為了分析職工的收入與年齡、學(xué)歷等方面的關(guān)系,必須從樣本中按月收入用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[1 500,2 000)的這組中應(yīng)抽取多少人?

(2)試估計樣本數(shù)據(jù)的中位數(shù)與平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是雙曲線C的左,右焦點,O是坐標(biāo)原點C的一條漸近線的垂線,垂足為P,若,則C的離心率為  

A. B. 2 C. D.

查看答案和解析>>

同步練習(xí)冊答案