分析 設(shè)長(zhǎng)方體的三度為,a,b,c,所求三棱錐的體積為:abc-4×$\frac{1}{3}×\frac{1}{2}abc$=$\frac{1}{3}$abc.底面三角形是等腰三角形時(shí),m=n=$\sqrt{6}$時(shí),能求出三棱錐體積的最大值.
解答 解:如圖設(shè)長(zhǎng)方體的三度為,a,b,c,
所求三棱錐的體積為:
abc-4×$\frac{1}{3}×\frac{1}{2}abc$=$\frac{1}{3}$abc.
a2+b2=4,b2+c2=n2,a2+c2=m2,
所以2(a2+b2+c2)
=n2+m2+4=16.
a2+b2+c2=8.
因?yàn)?≥$3\root{3}{(abc)^{2}}$,abc≤$\sqrt{(\frac{8}{3})^{3}}$=$\frac{16\sqrt{6}}{9}$,
此時(shí)a=b=c,與n2+m2=12,a2+b2=4,矛盾;
當(dāng)?shù)酌嫒切问堑妊切螘r(shí),m=n=$\sqrt{6}$,
三棱錐體積的最大值為:$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.
點(diǎn)評(píng) 本題考查幾何體的體積的求法,擴(kuò)展為長(zhǎng)方體是解題的關(guān)鍵,考查基本不等式的應(yīng)用,轉(zhuǎn)化思想與計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 必要不充分 | ||
C. | 充分不必要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 空間四邊形 | B. | 任意的四邊形 | C. | 梯形 | D. | 平行四邊形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com