【題目】隨著手機的普及,大學生迷戀手機的現(xiàn)象非常嚴重.為了調(diào)查雙休日大學生使用手機的時間,某機構(gòu)采用不記名方式隨機調(diào)查了使用手機時間不超過小時的名大學生,將人使用手機的時間分成組:,,,,分別加以統(tǒng)計,得到下表,根據(jù)數(shù)據(jù)完成下列問題:
使用時間/時 | |||||
大學生/人 |
(1)完成頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計大學生使用手機的平均時間.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對任意的t>0,存在唯一的s,使t=f(s).
(3)設(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當t>e2時,有 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.
Ⅰ求證;
Ⅱ若平面ABCD.
求二面角的大。
在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近13年的宣傳費和年銷售量 數(shù)據(jù)作了初步處理,得到散點圖及一些統(tǒng)計量的值.
由散點圖知,按建立關(guān)于的回歸方程是合理的.令,則,經(jīng)計算得如下數(shù)據(jù):
| |||||
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
最小二乘法求線性回歸方程系數(shù)公式
(Ⅰ)根據(jù)以上信息,建立關(guān)于的回歸方程;
(Ⅱ)已知這種產(chǎn)品的年利潤與的關(guān)系為.根據(jù)(1)的結(jié)果,求當年宣傳費時,年利潤的預報值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,首項a1=1,且a3+1是a2+1與a4+2的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A在y軸正半軸上,點Pn在x軸上,其橫坐標為xn , 且{xn} 是首項為1、公比為2的等比數(shù)列,記∠PnAPn+1=θn , n∈N* .
(1)若 ,求點A的坐標;
(2)若點A的坐標為(0,8 ),求θn的最大值及相應n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),在一個周期內(nèi)的圖像如圖所示.
(I)求函數(shù)的解析式;
(II)設,且方程有兩個不同的實數(shù)根,求實數(shù)的取值范圍以及這兩個根的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《張邱建算經(jīng)》是中國古代數(shù)學史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹,竹尾風割斷,剩下三十節(jié),一節(jié)一個圈,頭節(jié)高五寸①,頭圈一尺三②,逐節(jié)多三分③,逐圈少分三④,一蟻往上爬,遇圈則繞圈。爬到竹子頂,行程是多遠?”(注釋:①第節(jié)的高度為0.5尺;②第一圈的周長為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長比其下面的一圈少0.013尺),問:此民謠提出的問題的答案是( )
A. 61.395尺B. 61.905尺C. 72.705尺D. 73.995尺
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C: 的左右焦點分別是F1 , F2 , 離心率為 ,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,連接PF1 , PF2 , 設∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍;
(3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點,設直線PF1 , PF2的斜率分別為k1 , k2 , 若k≠0,試證明 為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com