過拋物線y2=4x的焦點,且傾斜角為數(shù)學(xué)公式π的直線交拋物線于P、Q兩點,O為坐標(biāo)原點,則△OPQ的面積等于________.

2
分析:設(shè)P(x1,y1),Q(x2,y2),則S=|OF|•|y1-y2|.直線為x+y-1=0,即x=1-y代入y2=4x得:y2=4(1-y),由此能求出△OPQ的面積.
解答:設(shè)P(x1,y1),Q(x2,y2),則S=|OF|•|y1-y2|.
直線為x+y-1=0,即x=1-y代入y2=4x得:
y2=4(1-y),即y2+4y-4=0,∴y1+y2=-4,y1y2=-4,
∴|y1-y2|===4,
∴S=|OF|•|y1-y2|=×4=2
故答案為:2
點評:本題考查拋物線的性質(zhì)和應(yīng)用,解題時要認真審題,仔細解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點且與拋物線交于A,B兩點,則|AB|=( 。
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點.
(1)求當(dāng)|AB|+|CD|取最小值時直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,O為坐標(biāo)原點.若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標(biāo)原點,若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,A、B兩點在準線l上的射影分別為M.N,則∠MFN=( 。

查看答案和解析>>

同步練習(xí)冊答案