設(shè)曲線C的方程是y=x3-x,將C沿x軸、y軸正向分別平移t、s單位長度后,得到曲線C1.
(1)寫出曲線C1的方程;
(2)證明:曲線C與C1關(guān)于點(diǎn)A(,)對(duì)稱.
⑴;⑵證明見解析.
(1)C1:……………………………………①
(2)分析:要證明曲線C1與C關(guān)于點(diǎn)A(,)對(duì)稱,只需證明曲線C1上任意一個(gè)點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn)都在曲線C上,反過來,曲線C上任意一個(gè)點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn)都在曲線C1上即可.
證明:設(shè)P1(x1,y1)為曲線C1上任意一點(diǎn),它關(guān)于點(diǎn)A(,)的對(duì)稱點(diǎn)為
P(t-x1,s-y1),把P點(diǎn)坐標(biāo)代入曲線C的方程,左=s-y1,右=(t-x1)3-(t-x1).
由于P1在曲線C1上,∴y1-s=(x1-t)3-(x1-t).
∴s-y1=(t-x1)3-(t-x1),即點(diǎn)P(t-x1,s-y1)在曲線C上.
同理可證曲線C上任意一點(diǎn)關(guān)于點(diǎn)A的對(duì)稱點(diǎn)都在曲線C1上.
從而證得曲線C與C1關(guān)于點(diǎn)A(,)對(duì)稱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
t |
2 |
s |
2 |
t3 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
t |
2 |
s |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年四川省成都七中高三數(shù)學(xué)專項(xiàng)訓(xùn)練:反函數(shù)到奇偶性(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):5.3 兩點(diǎn)間距離公式、線段的定比分點(diǎn)與圖形的平移(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com