【題目】若函數(shù)f(x)=x2+ax﹣ 在( ,+∞)是增函數(shù),則a的取值范圍(
A.(﹣∞,3]
B.(﹣∞,﹣3]
C.[﹣3,+∞)
D.(﹣3,+∞)

【答案】C
【解析】解:由f(x)=x2+ax﹣ ,得f′(x)=2x+a+ = , 令g(x)=2x3+ax2+1,
要使函數(shù)f(x)在( ,+∞)是增函數(shù),
則g(x)=2x3+ax2+1在x∈( ,+∞)大于等于0恒成立,
g′(x)=6x2+2ax=2x(3x+a),
① 當(dāng)a≥0時,g′(x)>0恒成立,
∴g(x)在( ,+∞)單調(diào)遞增,
∴g(x)>g( )= + >0,∴f′(x)>0,
∴f(x)在( ,+∞)是增函數(shù),滿足條件;
②當(dāng)﹣ ≤a<0時,3x+a≥0,g′(x)≥0,
∴g(x)在( ,+∞)單調(diào)遞增,
∴g(x)>g( )= + >0,∴f′(x)>0,
∴f(x)在( ,+∞)是增函數(shù),滿足條件;
③a<﹣ 時,令g′(x)>0,解得:x>﹣ ,令g′(x)<0,解得: <x<﹣ ,
∴g(x)在( ,﹣ )遞減,在(﹣ ,+∞)遞增,
∴g(x)min≥g(﹣ )=2× +a +1≥0,
解得:a≥﹣3,此時f′(x)>0,
∴f(x)在( ,+∞)是增函數(shù),滿足條件;
綜上:a≥﹣3;
所以答案是:[﹣3,+∞).
【考點精析】通過靈活運用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣3x+5,若關(guān)于x的方程f(x)=a至少有兩個不同實根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別是橢圓的左、右焦點.

(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標(biāo);

(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 已知曲線y=f(x)

處的切線與直線垂直。

(1) 的值;

(2) 若對任意x1,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)同時擲兩顆骰子,得到點數(shù)分別為a,b,則橢圓 =1(a>b>0)的離心率e> 的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+cx的導(dǎo)函數(shù)圖象關(guān)于直線x=2對稱
(1)求b值;
(2)若f(x)在x=t處取得極小值,記此極小值為g(t),求g(t)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(ax2+4x+5).
(1)若f(1)<3,求a的取值范圍;
(2)若a=1,求函數(shù)f(x)的值域.
(3)若f(x)的值域為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.

(1)求的取值范圍.

(2)設(shè)的兩個極值點為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex
(Ⅰ)求曲線f(x)過O(0,0)的切線l方程;
(Ⅱ)求曲線f(x)與直線x=0,x=1及x軸所圍圖形的面積.

查看答案和解析>>

同步練習(xí)冊答案