【題目】為貫徹落實教育部等部門《關(guān)于加快發(fā)展青少年校園足球的實施意見》,全面提高我市中學(xué)生的體質(zhì)健康水平,普及足球知識和技能,市教體局決定舉行春季校園足球聯(lián)賽,為迎接此次聯(lián)賽,甲中學(xué)選拔了名學(xué)生組成集訓(xùn)隊,現(xiàn)統(tǒng)計了這名學(xué)生的身高,記錄如下表:

身高

人數(shù)

1請計算這名學(xué)生的身高中位數(shù)、眾數(shù),并補(bǔ)充完成下面的莖葉圖:

2身高為的四名學(xué)生分別為,現(xiàn)從這四名學(xué)生名擔(dān)任正副門將,請利用列舉法列出所有可能情況,并求學(xué)生入選正門將的概率

【答案】1中位數(shù)為,眾數(shù)為.莖葉圖見解析2概率

【解析】

試題分析:1先列出莖葉圖,可得眾數(shù)為中位數(shù)為2列舉有順序,共有12種,其中入選正門將有3種,根據(jù)古典概型概率計算方法得學(xué)生入選正門將的概率為

試題解析:1中位數(shù)為,眾數(shù)為.莖葉圖如下:

2正副門將的所有可能情況為

,種,其中學(xué)生入選正門將有種, 故學(xué)生入選正門將的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果袋中裝有數(shù)量差別很大而大小相同的白球和黃球(只是顏色不同)若干個,從中任取一球,取了10次有7個白球,估計袋中數(shù)量最多的是________球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校調(diào)查了20名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是,樣本數(shù)據(jù)分組為,.

(1)求直方圖中的值;

(2)從每周自習(xí)時間在的受調(diào)查學(xué)生中,隨機(jī)抽取2人,求恰有1人的每周自習(xí)時間在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), )為奇函數(shù),且相鄰兩對稱軸間的距離為.

(1)當(dāng)時,求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接春節(jié),某工廠大批生產(chǎn)小孩具—— 拼圖,工廠為了規(guī)定工時定額,需要確定加工拼圖所花費(fèi)的時間,為此進(jìn)行了10次試驗,測得的數(shù)據(jù)如下:

拼圖數(shù)

/個

10

20

30

40

50

60

70

80

90

100

加工時間

/分鐘

62

68

75

81

89

95

102

108

115

122

(1)畫出散點圖,并判斷是否具有線性相關(guān)關(guān)系;

(2)求回歸方程;

(3)根據(jù)求出的回歸方程,預(yù)測加工2010個拼圖需要用多少小時?(精確到0.1)

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

, .

參考數(shù)據(jù)

合計

10

20

30

40

50

60

70

80

90

100

550

62

68

75

81

89

95

102

108

115

122

917

100

400

900

1600

2500

3600

4900

6400

8100

10000

38500

620

1360

2250

3240

4450

5700

7140

8840

10350

12200

55950

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(2)若在區(qū)間上不存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中a∈R.

當(dāng)a=1時,判斷fx的單調(diào)性;

若gx在其定義域內(nèi)為增函數(shù),求正實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,點.

(1)求證:;

(2)二面角正弦值;

(3)平面距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1 求函數(shù)的單調(diào)遞減區(qū)間;

2 當(dāng)時,的最小值是,求實數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案