精英家教網 > 高中數學 > 題目詳情

【題目】從0,1,2,3,4這五個數中任選三個不同的數組成一個三位數,記Y為所組成的三位數各位數字之和.
(1)求Y是奇數的概率;
(2)求Y的概率分布和數學期望.

【答案】
(1)解:記“Y是奇數”為事件A.能組成的三位數的個數為48,Y是奇數的個數為28.

所以

答:Y是奇數的概率為


(2)Y的可能取值為3,4,5,6,7,8,9.

∴當Y=3時,組成的三位數只能是0,1,2三個數字組成,P(Y=3)= = =

同理可得:P(Y=4)= = ;P(Y=5)= ×2= ;P(Y=6)= + = = ;

P(Y=7)= + = ;P(Y=8)= = ;P(Y=9) =

可得分布列:

Y

3

4

5

6

7

8

9

P(Y)

∴EY= +4× +5× +6× +7× +8× +9× =


【解析】(1)先計算能組成的三位數的個數,再計算Y是奇數的個數,最后用古典概型的概率公式可得Y是奇數的概率;(2)先分別求出隨機變量的所有可能取值的概率,再寫出分布列,進而可得數學期望.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA= c,D是AC的中點,且cosB= ,BD=
(1)求角A的大。
(2)求△ABC的最短邊的邊長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設備,從圓心O點出發(fā),在地下鋪設4條到A,B,C,D四點線路OA,OB,OC,OD.

(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設的4條線路OA,OB,OC,OD總長度的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E,F(xiàn)分別為弦AB與弦AC上的點,且BCAE=DCAF,B,E,F(xiàn),C四點共圓.證明:CA是△ABC外接圓的直徑.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,已知平面PBC⊥平面ABC.

(1)若AB⊥BC,CP⊥PB,求證:CP⊥PA:
(2)若過點A作直線l⊥平面ABC,求證:l∥平面PBC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3 (1﹣a)x2﹣3ax+1,a>0.
(1)試討論f(x)(x≥0)的單調性;
(2)證明:對于正數a,存在正數p,使得當x∈[0,p]時,有﹣1≤f(x)≤1;
(3)設(1)中的p的最大值為g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】每年5月17日為國際電信日,某市電信公司每年在電信日當天對辦理應用套餐的客戶進行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據以往的統(tǒng)計結果繪出電信日當天參與活動的統(tǒng)計圖,現(xiàn)將頻率視為概率.

(1)求某兩人選擇同一套餐的概率;
(2)若用隨機變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】點P是雙曲線 的右支上一點,其左,右焦點分別為F1 , F2 , 直線PF1與以原點O為圓心,a為半徑的圓相切于A點,線段PF1的垂直平分線恰好過點F2 , 則離心率的值為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,從中有放回地每次取一個球,共取3次,取得三個球的編號之和不小于13的概率為(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案