已知橢圓,直線交橢圓兩點(diǎn).
(Ⅰ)求橢圓的焦點(diǎn)坐標(biāo)及長軸長;
(Ⅱ)求以線段為直徑的圓的方程.
(Ⅰ)焦點(diǎn)坐標(biāo),,長軸長;(Ⅱ)

試題分析:(Ⅰ)將橢圓方程變形為標(biāo)準(zhǔn)方程,即可知的值,根據(jù)可求,即可求出焦點(diǎn)坐標(biāo)及長軸長。(Ⅱ)將直線和橢圓方程聯(lián)立,消去得關(guān)于的一元二次方程,可求出兩根,即為兩交點(diǎn)的橫坐標(biāo),分別代入直線方程可得交點(diǎn)的縱坐標(biāo)。用中點(diǎn)坐標(biāo)公式可求中點(diǎn)即圓心的坐標(biāo),再用兩點(diǎn)間距離公式可求半徑。
試題解析:解:(Ⅰ)原方程等價于.
由方程可知:,,.         3分
所以 橢圓的焦點(diǎn)坐標(biāo)為,長軸長.     5分
(Ⅱ)由可得:.
解得:.
所以 點(diǎn)的坐標(biāo)分別為,.                      7分
所以 中點(diǎn)坐標(biāo)為,.      9分
所以 以線段為直徑的圓的圓心坐標(biāo)為,半徑為.
所以 以線段為直徑的圓的方程為.        11分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線lxy=0與以原點(diǎn)為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓于AB兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1k2=4,證明:直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線在點(diǎn),處的切線垂直相交于點(diǎn),直線與橢圓相交于,兩點(diǎn).

(1)求拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)的距離;
(2)設(shè)點(diǎn)到直線的距離為,試問:是否存在直線,使得,成等比數(shù)列?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線.
(1)若曲線是焦點(diǎn)在軸上的橢圓,求的取值范圍;
(2)設(shè),過點(diǎn)的直線與曲線交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為直角,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,且經(jīng)過點(diǎn)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),直線與橢圓交于兩點(diǎn).若△是以為直角頂點(diǎn)的等腰直角三角形,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)點(diǎn)P為圓上一個動點(diǎn),M為點(diǎn)P在y軸上的投影,動點(diǎn)Q滿足
(1)求動點(diǎn)Q的軌跡C的方程;
(2)一條直線l過點(diǎn),交曲線C于A、B兩點(diǎn),且A、B同在以點(diǎn)D(0,1)為圓心的圓上,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的頂點(diǎn)恰好是橢圓的兩個頂點(diǎn),且焦距是,則此雙曲線的漸近線方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線軸旋轉(zhuǎn)一周形成一個如圖所示的旋轉(zhuǎn)體,在此旋轉(zhuǎn)體內(nèi)水平放入一個正方體,該正方體的一個面恰好與旋轉(zhuǎn)體的開口面平齊,則此正方體的體積是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的漸近線與拋物線的準(zhǔn)線所圍成的三角形面積為,則該雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案