如圖所示,在正方體ABCD-A1B1C1D1中,S,E,G分別是B1D1,BC,SC的中點.
求證:直線EG∥平面BB1D1D.
證明:如圖,連接SB 

∵E,G分別是BC,SC的中點,∴EG∥SB 

∴直線EG∥平面BB1D1D
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,PD=PA,E、F分別是AB、PD的中點。

(1)求證:AF∥平面PCE;
(2)求證:平面PCE⊥平面PCD。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在斜三棱柱ABC-A1B1C1中,A0,B0,分別為側(cè)棱AA1,BB1上的點,且知BB0=A0A1,過A0,B0,C1的截面將三棱柱分成上下兩個部分體積之比為(   )
A.2:1B.4:3C.3:2D.1:1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,,,AB=2.M為PD的中點.求直線PC與平面ABM所成的角的正弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中,正確的個數(shù)有(   ).
①任意一個三角形確定一個平面,②任意一個四邊形確定一個平面,
③任意一個梯形確定一個平面,④任意一個平行四邊形確定一個平面;
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

18.(本小題滿分13分)如圖,平面⊥平面,,,

直線與直線所成的角為,又。     
(1)求證:;
(2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中,真命題是
A.空間不同三點確定一個平面
B.空間兩兩相交的三條直線確定一個平面
C.兩組對邊相等的四邊形是平行四邊形
D.和同一直線都相交的三條平行線在同一平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)如圖,圓柱內(nèi)有一個三棱柱,三棱柱的 底面為圓柱
底面的內(nèi)接三角形,且是圓的直徑。
(I)證明:平面平面;
(II)設,在圓內(nèi)隨機選取一點,記該點取自三棱柱內(nèi)的概率為
(i)當點在圓周上運動時,求的最大值;
(ii)如果平面與平面所成的角為。當取最大值時,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)如圖,正方形ABCD所在平面與平面四邊形ABEF所在平面互相垂直, 
是等腰直角三角形,AB=AE,F(xiàn)A=FE,∠AEF=45°
(1)求證:EF⊥平面BCE;
(2)設線段CD的中點為P,在直線AE上是否存在一點M,使得PM//平面BCE?若存在,請指出點M的位置,并證明你的結(jié)論;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案