18.若復(fù)數(shù)$\frac{1+i}{1-i}$+b(b∈R)所對(duì)應(yīng)的點(diǎn)在直線x+y=1上,則b的值為0.

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)$\frac{1+i}{1-i}$+b=$\frac{(1+i)^{2}}{(1-i)(1+i)}$+b=$\frac{2i}{2}$+b=b+i所對(duì)應(yīng)的點(diǎn)(b,1)在直線x+y=1上,
∴b+1=1,
解得b=0.
故答案為:0.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知拋物線C:y2=4x與點(diǎn)M(-1,2),過(guò)C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,則k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,∠A,∠B,∠C所對(duì)的邊長(zhǎng)分別是x+1,x,x-1,且∠A=2∠C,則△ABC的周長(zhǎng)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)F1、F2是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn),P為雙曲線左支上任意一點(diǎn),若|PF2|=2|PF1|,∠F1PF2=60°,則雙曲線離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+$\sqrt{3}$D.$\sqrt{3}$-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.從5臺(tái)甲型和4臺(tái)乙型電視機(jī)中任意取出3臺(tái),其中至少要有甲型與乙型電視機(jī)各1臺(tái),則不同的取法共有70種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)z滿(mǎn)足$\frac{z}{1-z}$=2i,則|z|2(  )
A.等于z的實(shí)部B.大于z的實(shí)部C.等于z的虛部D.小于z的虛部

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系xOy中,圓O:x2+y2=4,橢圓M:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(0<b<2),A為橢圓右頂點(diǎn),過(guò)原點(diǎn)O且異于坐標(biāo)軸的直線與橢圓M交于B,C兩點(diǎn),直線AB與圓O的另一交點(diǎn)為P,直線PD與圓O的另一交點(diǎn)為Q,其中D(-$\frac{6}{5}$,0).設(shè)直線AB,AC的斜率分別為k1,k2,且k1k2=-$\frac{1}{4}$.
(1)求橢圓M的方程;
(2)記直線PQ,BC的斜率分別為kPQ,kBC,是否存在常數(shù)λ,使得kPQ=λkBC?若存在,求λ值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+3x+a是奇函數(shù),且函數(shù)g(x)=|f(x)-k|-1有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(-∞,-3)B.(1,+∞)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,其右焦點(diǎn)為F(c,0),第一象限的點(diǎn)A在橢圓C上,且AF⊥x軸.
(1)若橢圓C過(guò)點(diǎn)(1,-$\frac{3}{2}$),求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知直線l:y=x-c與橢圓C交于M、N兩點(diǎn),且B(4c,yB)為直線l上的點(diǎn).證明:直線AM,AB、AN的斜率滿(mǎn)足kAB=$\frac{{k}_{AM}+{k}_{AN}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案