【題目】已知橢圓:的兩個(gè)焦點(diǎn)為,,焦距為,直線:與橢圓相交于,兩點(diǎn),為弦的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線:與橢圓相交于不同的兩點(diǎn),,,若(為坐標(biāo)原點(diǎn)),求的取值范圍.
【答案】(1)(2)或
【解析】
(1)因?yàn)?/span>為弦的中點(diǎn),設(shè),,將其代入利用點(diǎn)差法,即可求得答案.
(2)因?yàn)?/span>,,三點(diǎn)共線,, 根據(jù)三點(diǎn)共線性質(zhì)可得:,則,將直線和橢圓聯(lián)立方程消掉,結(jié)合已知,利用韋達(dá)定理即可求得答案.
(1) 焦距為,則,
設(shè),,
為弦的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式可得:,,
又 將其,代入橢圓:
將兩式作差可得:,
,
——①.
——②
由①②得:
橢圓的標(biāo)準(zhǔn)方程為.
(2) ,,三點(diǎn)共線,
根據(jù)三點(diǎn)共線性質(zhì)可得: ,則
設(shè),,則,
.
將直線和橢圓聯(lián)立方程消掉.
可得:.
——①,
根據(jù)韋達(dá)定理:,,
代入,可得:,,
,即.
,,
——②,
代入①式得,即,
,
滿足②式,
或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn),點(diǎn)均在圓上,且,過(guò)點(diǎn)作的平行線分別交,于兩點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)過(guò)點(diǎn)的動(dòng)直線與點(diǎn)的軌跡交于兩點(diǎn).問(wèn)是否存在常數(shù),使得點(diǎn)為定值?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:過(guò)點(diǎn)A,兩個(gè)焦點(diǎn)為(-1,0),(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)先修課程,是在高中開(kāi)設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中成功開(kāi)設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程.
(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫(xiě)相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e(cuò)的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計(jì) | |
學(xué)習(xí)大學(xué)先修課程 | 250 | ||
沒(méi)有學(xué)習(xí)大學(xué)先修課程 | |||
總計(jì) | 150 |
(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進(jìn)行測(cè)試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:函數(shù)在定義域上單調(diào)遞增;命題:在區(qū)間上恒成立.
(1)如果命題為真命題,求實(shí)數(shù)的值或取值范圍;
(2)命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.(注)
(2)設(shè),若函數(shù)恰有兩個(gè)不同的極值點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱(chēng)為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱(chēng)為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù))有兩個(gè)極值點(diǎn),.
(1)求的范圍;
(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長(zhǎng)為2的等邊三角形且垂直于底, 是的中點(diǎn)。
(1)證明:直線平面;
(2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com