在一個(gè)不透明的箱子里裝有5個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1、2、3、4、5.甲先從箱子中摸出一個(gè)小球,記下球上所標(biāo)數(shù)字后,再將該小球放回箱子中搖勻后,乙從該箱子中摸出一個(gè)小球.
(Ⅰ)若甲、乙兩人誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同為平局),求甲獲勝的概率;
(Ⅱ)若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字之和小于6則甲獲勝,否則乙獲勝,這樣規(guī)定公平嗎?
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(1)由題意知本題是一個(gè)古典概型,列舉出所有的基本事件,列舉出滿足條件的事件,根據(jù)古典概型的公式,得到結(jié)果.
(2)根據(jù)古典概型公式算出兩人摸到的球上所標(biāo)數(shù)字之和小于6則甲獲勝,否則乙獲勝,把所得結(jié)果進(jìn)行比較,得到結(jié)論.
解答: 解:用(x,y)(x表示甲摸到的數(shù)字,y表示乙摸到的數(shù)字)表示甲、乙各摸一球構(gòu)成的基本事件,則基本事件有:(1,1),(1,2)、(1,3)、(1,4)、(1,5)、(2,1)、(2,2)、(2,3)、(2,4)、(2、5)、(3,1)、(3,2)、(3,3)、(3,4)、(3、5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5)共25個(gè); 
(1).則事件A包含的基本事件有:(2,1)、(3,1)(3,2)(4,1)(4,2)、(4,3)、(5,1)、(5,2)、(5,3)、(5,4)、共有10個(gè);
則 P(A)=
10
25
=
2
5
.)
(2).設(shè):甲獲勝的事件為B,乙獲勝的事件為C.事件B所包含的基本事件有:事件B所包含的基本事件有:(1,1),(1,2)、(1,3),(1,4),(2,1),(2,2),(2.3),(3,1),(3,2),(4,1)共有10個(gè);
則P(B)=
10
25
=
2
5

所以P(C)=1-P(B)=1-
2
5
=
3
5

因?yàn)镻(B)≠P(C),所以這樣規(guī)定不公平.
點(diǎn)評(píng):本題考查概率的意義和用列舉法來列舉出所有的事件數(shù),本題解題的關(guān)鍵是不重不漏的列舉出所有的事件數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)g(x)滿足g(x+2)=g(2-x),f(x)=
g(x)(x≠2)
1(x=2)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個(gè)不同的實(shí)數(shù)解x1,x2,x3,則x1+x2+x3=(  )
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校第大一學(xué)生參加社會(huì)實(shí)踐活動(dòng)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取n名學(xué)生作為樣本,得到這n名學(xué)生參加社會(huì)實(shí)踐活動(dòng)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下:
分組頻數(shù)頻率
[10,15)100.25
[15,20)25m
[20,25)xp
[25,30)20.05
合計(jì)n1
(Ⅰ)若該高校大一學(xué)生有3600人,試估計(jì)該校大一學(xué)生參加社會(huì)實(shí)踐活動(dòng)的次數(shù)在區(qū)間[20,25)內(nèi)的人數(shù);
(Ⅱ)在所取樣本中,從參加社會(huì)實(shí)踐活動(dòng)的次數(shù)不少于29次的學(xué)生中任選2人,求至少一人參加社會(huì)實(shí)踐活動(dòng)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的主視圖、俯視圖如圖所示,則該正三棱錐的左視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角坐標(biāo)系xOy中,直線l的參數(shù)方程:
x=
2
2
t-
2
y=
2
2
t
(t為參數(shù)),以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,則以極點(diǎn)為圓心與直線l相切的圓的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在xo(a<xo<b),滿足f(xo)=
f(b)-F(a)
b-a
,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,xo是它的一個(gè)均值點(diǎn).例如y=|x|是[-2,2]上的“平均值函數(shù)”,O就是它的均值點(diǎn).
(1)若函數(shù),f(x)=x2-mx-1是[-1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是
 

(2)若f(x)=㏑x是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,xo是它的一個(gè)均值點(diǎn),則㏑xo
1
ab
的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非零向量
a
、
b
、
c
滿足|
a
|=|
b
|=|
c
|,
a
+
b
=
c
,則
a
b
的夾角為( 。
A、150°B、120°
C、90°D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在底面直徑為6的圓柱形容器中,放入一個(gè)半徑為2的冰球,當(dāng)冰球全部溶化后,容器中液面的高度為
 
.(相同質(zhì)量的冰與水的體積比為10:9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A、B、C的對(duì)邊,D為邊AC的中點(diǎn),a=3
2
,cos∠ABC=
2
4

(Ⅰ)若c=3,求sin∠ACB的值;
(Ⅱ)若BD=3,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案