已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ)
,若向量
a
b
的夾角為60°,求cos(α-β)的值.
分析:根據(jù)向量模與數(shù)量積運算公式,我們易計算出|
a
|,|
b
|,
a
b
,代入
a
b
=6cos(α-β),即可求出結(jié)果.
解答:解:
a
b
=6cosαcosβ+6sinαsinβ=6cos(α-β)
(3分)
a
b
=|
a
||
b
|cos<
a
b
>=2×3×
1
2
=3(6分)
∴6cos(α-β)=3,cos(α-β)=
1
2
(9分)
點評:本題考查了兩角和與差的余弦公式以及向量模與數(shù)量積運算公式,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosθ,2sinθ)
θ∈(
π
2
,π),
b
=(0,-1)
,則向量
a
b
的夾角為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosθ,1),
b
=(sinθ+cosθ,1),- 
π
2
<θ<
π
2

(I)若
a
b
,求θ的值
(II)設(shè)f(θ)=
a
b
,求函數(shù)f(θ)的最大值及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosωx,1),
b
=(sinωx+cosωx,-1)
,(ω∈R,ω>0),設(shè)函數(shù)f(x)=
a
b
(x∈R)
,若f(x)的最小正周期為
π
2

(1)求ω的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•馬鞍山模擬)已知向量
a
=(2cos,2sinx)
,向量
b
=(
3
cosx,-cosx)
,函數(shù)f(x)=
a
b
-
3

(1)求函數(shù)f(x)(2)的最小正周期;
(3)求函數(shù)f(x)(4)的單調(diào)遞增區(qū)間;
(5)求函數(shù)f(x)(6)在區(qū)間[
π
12
12
]
(7)上的值域.

查看答案和解析>>

同步練習冊答案