已知函數(shù)f(x)=
x3
3
+
1
2
ax2+2bx+c的兩個(gè)極值分別為f(x1)和f(x2),若x1和x2分別在區(qū)間(-2,0)與(0,2)內(nèi),則
b-2
a-1
的取值范圍為( 。
A、(-2,
2
3
B、[-2,
2
3
]
C、(-∞,-2)∪(
2
3
,+∞)
D、(-∞,-2]∪[
2
3
,+∞)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)極值的意義可知,極值點(diǎn)x1、x2是導(dǎo)函數(shù)等于零的兩個(gè)根,根據(jù)根的分布建立不等關(guān)系,畫(huà)出滿足條件的區(qū)域,明確目標(biāo)函數(shù)的幾何意義,即可求得結(jié)論.
解答: 解:求導(dǎo)函數(shù)可得f'(x)=x2+ax+2b
依題意知,方程f'(x)=0有兩個(gè)根x1、x2,且x1∈(-2,0),x2∈(0,2),
等價(jià)于f'(-2)>0,f'(0)<0,f'(2)>0.
2-a+b>0
b<0
2+a+b>0

滿足條件的(a,b)的平面區(qū)域?yàn)閳D中陰影部分,三角形的三個(gè)頂點(diǎn)坐標(biāo)為A(-2,0),B(0,-2),C(2,0),

b-2
a-1
表示(a,b)與點(diǎn)(1,2)連線的斜率,由圖可知故A點(diǎn)的斜率為
2-0
1+2
=
2
3

過(guò)B點(diǎn)的斜率為
2+2
1-0
=4,過(guò)C點(diǎn)的斜率為
2-0
1-2
=-2,
b-2
a-1
的取值范圍為(-∞,-2]∪[
2
3
,+∞).
故選D.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及二元一次不等式(組)與平面區(qū)域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足{1}⊆M⊆{1,2,3,4,5}的集合M的個(gè)數(shù)為(  )
A、4B、6C、8D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有
 
(把正確的題號(hào)寫(xiě)在橫線上):
①Z⊆R;       
②f(x)=x與g(x)=
x2
x
表示同一個(gè)函數(shù); 
③-1∉Z,∅⊆Z; 
④已知映射f:x→y=x2,則4的原象是±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S3=0,S5=-5.
(Ⅰ)求{an}的通項(xiàng)公式;          
(Ⅱ)設(shè)bn=
1
a2n-1a2n+1
求{bn}的通項(xiàng)公式
(Ⅲ)仔細(xì)觀察下式
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)=1-
1
5
=
4
5
,并求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,側(cè)棱PD⊥平面ABCD,M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:平面PCD⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知曲線C:y=
1
x
在點(diǎn)P(1,1)處的切線與x軸交于點(diǎn)Q1,過(guò)點(diǎn)Q1作x軸的垂線交曲線C于點(diǎn)P1,曲線C在點(diǎn)P1處的切線與x軸交于點(diǎn)Q2,過(guò)點(diǎn)Q2作x軸的垂線交曲線C于點(diǎn)P2,…,依次得到一系列點(diǎn)P1、P2、…、Pn,設(shè)點(diǎn)Pn的坐標(biāo)為(xn,yn)(n∈N*).
(Ⅰ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)求證:三角形PnPn+1Pn+2的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b滿足等式2a=3b,下列五個(gè)關(guān)系式中不正確的序號(hào)是
 

①0<b<a;②a<b<0;③0<a<b;④a=b;⑤b<a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩名射手在一次射擊中的得分是兩個(gè)隨機(jī)變量,分別記為X和Y,它們的分布列分別為
Y012
P0.20.2b
P0.1a0.4
(1)求a,b的值;
(2)計(jì)算X和Y的期望與方差,并以此分析甲、乙兩射手的技術(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“對(duì)任意x∈R,x2-3x+1>0”的否定是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案