已知直線l:y=kx+b和曲線y=x3-3x+1相切,則斜率k最小時(shí)直線l的方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),得到導(dǎo)函數(shù)的最小值,求出此時(shí)x的值,再求出此時(shí)的函數(shù)值,由直線方程的點(diǎn)斜式求得斜率k最小時(shí)直線l的方程.
解答: 解:由y=x3-3x+1,得y′=3x2-3,則y′=3(x2-1)≥-3,
當(dāng)y′=-3時(shí),x=0,
此時(shí)f(0)=1,
∴斜率k最小時(shí)直線l的方程為y-1=-3(x-0),即3x+y-1=0.
故答案為:3x+y-1=0.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)設(shè)BE=x,問當(dāng)x為何值時(shí),三棱錐A-CDF的體積有最大值?并求出這個(gè)最大值.
(2)當(dāng)BE=1,是否在折疊后的AD上存在一點(diǎn)P,使得CP∥平面ABEF?若存在,求出AP的長(zhǎng),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC=3,BC=2,∠ABC的平分線交BC的平行線于點(diǎn)D,則△ABD的面積為( 。
A、3
2
B、
9
2
C、3
3
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,已知P為線段AB上一點(diǎn),
OP
=x
OA
+y
OB
,
BP
PA
(λ為實(shí)數(shù)),OA=4,OB=2,∠AOB=60°
(1)當(dāng)λ=1時(shí),求x,y的值;
(2)當(dāng)λ=3時(shí),求
OP
AB
的值;
(3)當(dāng)2≤λ≤3時(shí),求
OP
AB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,n=1,2,3,…,那么數(shù)列{an}( 。
A、是等差數(shù)列但不是等比數(shù)列
B、是等比數(shù)列但不是等差數(shù)列
C、既是等差數(shù)列又是等比數(shù)列
D、既不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinx,x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
有下列說法:
①函數(shù)f(x)對(duì)任意x1,x2∈[0,+∞),都有|f(x1)-f(x2)|≤2成立
②函數(shù)f(x)在[
1
2
(4n-3),
1
2
(4n-1)](n∈N•)上單調(diào)遞減;
③函數(shù)y=f(x)-log2x+1在(0,+∞)上有3個(gè)零點(diǎn);
④當(dāng)k∈[
8
7
,+∞)時(shí),對(duì)任意x>0,不等式f(x)≤
k
x
都成立.
其中正確的說法的個(gè)數(shù)是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin( α+
π
6
)=
1
3
,且α∈(0,π),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地計(jì)劃建設(shè)一個(gè)外墻側(cè)面面積為1500m2的倉(cāng)儲(chǔ),現(xiàn)有兩種方案,一是倉(cāng)儲(chǔ)外墻設(shè)計(jì)正四棱錐的側(cè)面(如圖a),四個(gè)側(cè)面均為底邊長(zhǎng)為30m的等腰三角形;二是倉(cāng)儲(chǔ)外墻設(shè)計(jì)為面半徑為20m的圓錐的側(cè)面(如圖b),請(qǐng)問選用哪一種方案能使倉(cāng)儲(chǔ)的空間更大一些,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,若
cosA
a
=
cosB
b
=
cosC
c
,試判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案