【題目】如圖,已知圓柱的底面圓的半徑,圓柱的表面積為;點(diǎn)在底面圓上,且直線與下底面所成的角的大小為,

(1)求點(diǎn)到平面的距離;

(2)求二面角的大小(結(jié)果用反三角函數(shù)值表示).

【答案】(1);(2)

【解析】

(1)確定是直線與下底面所成的角,如圖以為坐標(biāo)原點(diǎn),以、分別為軸,面上過(guò)點(diǎn)且與垂直的線為軸,建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量,利用距離公式,即可求點(diǎn)到平面的距離;
2)平面的一個(gè)法向量為,由(1)知平面的一個(gè)法向量,利用向量的夾角公式,即可求二面角的大小.

解:(1)設(shè),因?yàn)榈酌姘霃?/span>,圓柱的表面積為,
所以,解得,
因?yàn)?/span>底面,所以在底面上的射影,
所以是直線與下底面所成的角,即,
在直角三角形中,,,所以,
是底面直徑,所以
為坐標(biāo)原點(diǎn),以分別為軸,面上過(guò)點(diǎn)且與垂直的線為軸,建立空間直角坐標(biāo)系如圖所示:

,
于是,
設(shè)平面的一個(gè)法向量為,則,
不妨令,則,
所以到平面的距離,
所以點(diǎn)到平面的距離為
2)平面的一個(gè)法向量為,
由(1)知平面的一個(gè)法向量,
二面角的大小為,則,
由于二面角為銳角,所以二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極小值;

(2)求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐,底面是邊長(zhǎng)為的菱形,側(cè)面底面,,,中點(diǎn),的中點(diǎn),點(diǎn)在側(cè)棱(不包括端點(diǎn)).

(1)求證:

(2)是否存在點(diǎn),使與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,,為線段上一點(diǎn),平面.

1)求證:中點(diǎn);

2)若所成角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù).

1)當(dāng)時(shí),若對(duì)任意恒成立,求的取值范圍;

2)若函數(shù)有兩個(gè)不同的零點(diǎn),求的取值范圍,并證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的箱子中裝有大小形狀相同的5個(gè)小球,其中2個(gè)白球標(biāo)號(hào)分別為,3個(gè)紅球標(biāo)號(hào)分別為,,現(xiàn)從箱子中隨機(jī)地一次取出兩個(gè)球.

(1)求取出的兩個(gè)球都是白球的概率;

(2)求取出的兩個(gè)球至少有一個(gè)是白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是異面直線,,外的一點(diǎn),則下列結(jié)論中正確的是(

A.過(guò)有且只有一條直線與都垂直B.過(guò)有且只有一條直線與,都平行

C.過(guò)有且只有一個(gè)平面與,都垂直D.過(guò)有且只有一個(gè)平面與都平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知A(﹣20),B ,Mxy)是曲線C上的動(dòng)點(diǎn),且直線AMBM的斜率之積等于.

1)求曲線C方程;

2)過(guò)D2,0)的直線llx軸不垂直)與曲線C交于E,F兩點(diǎn),點(diǎn)F關(guān)于x軸的對(duì)稱點(diǎn)為F,直線EFx軸交于點(diǎn)P,求PEF的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A、B、C的對(duì)邊分別是a、b、c,已知

1)求角A;

2)若,△ABC的面積為,求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案