9.A={α=$\frac{5kπ}{3}$,k∈Z},B={β=$\frac{3kπ}{2}$,k∈Z},A∩B={0}.

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={α=$\frac{5kπ}{3}$,k∈Z},B={β=$\frac{3kπ}{2}$,k∈Z},
∴A∩B={0},
故答案為:{0}

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-$\frac{1}{f(x)}$,當(dāng)1≤x≤2時(shí),f(x)=x,則f(-$\frac{11}{2}$)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知復(fù)數(shù)z=1-$\sqrt{3}$i(其中i是虛數(shù)單位)($\overline{z}$)2+az=0,則實(shí)數(shù)a=2;|z+a|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)全集集U=R,集合M={x|-2≤x≤2},$N=\{\left.x\right|y=\sqrt{1-x}\}$,那么M∪N=(-∞,2],M∩N=[-2,1],∁UN=(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${S_n}+n=2{a_n}(n∈{N^*})$.
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足${b_n}={a_n}•{log_2}({a_n}+1)(n∈{N^*})$,其前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.自圓外一點(diǎn)P作圓x2+y2=1的兩條切線PM,PN(M,N為切點(diǎn)),若∠MPN=90°,則動(dòng)點(diǎn)P的軌跡方程是x2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是某高三學(xué)生七次模擬考試的物理成績(jī)的莖葉圖,則該學(xué)生物理成績(jī)的平均數(shù)和中位數(shù)分別為(  )
A.87和85B.86和85C.87和84D.86和84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知角α終邊上一點(diǎn)P(2m,1),且$sinα=\frac{1}{3}$.
(1)求實(shí)數(shù)m的值;
(2)求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知$sinα-cosα=\frac{1}{5}$(α是第三象限角),求sinα•cosα及sinα+cosα的值
(2)已知$cos({{{40}^o}+x})=\frac{1}{4}$,且-180°<x<-90°,求cos(140°-x)+cos2(50°-x)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案